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The classical Erdös-Gallai theorem (1960) kicked off the study of graph realizability 
by characterizing degree sequences. We extend this line of research by investigating 
realizability of directed acyclic graphs (DAGs) given a sequence of tuples each containing 
multiple node properties including the degree, reachability value (number of nodes 
reachable from a given node), depth and height of a node. The most interesting 
problems are when the sequences contain both a local constraint via degree values and 
a global constraint via reachability values. We show that, without degree constraints, DAG 
reachability realization is solvable in linear time, whereas it is strongly NP-complete given 
upper bounds on in-degree or out-degree. After defining a suitable notion of bicriteria 
approximation based on consistency, we give two approximation algorithms achieving 
O (logn)-reachability consistency and O (logn)-degree consistency; the first, randomized, 
uses LP (Linear Program) rounding, while the second, deterministic, employs a k-set 
packing heuristic. We end with some future directions of research and a set of conjectures 
that we hope will motivate further study of realizability with reachability constraints.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Given a property P , the Graph Realization problem asks whether there exists a graph that satisfies the property P . 
Starting with the Erdös-Gallai paper [1] on degree sequences [2,3] many other properties have been considered in the 
literature ranging from eccentricities [4,5] to connectivity and flow [6,7]. The best studied among these remain extensions of 
realization given degree sequences [8,9] and variants focusing on different subclasses of graphs [10–19]. In addition to their 
theoretical significance, realization questions occur naturally in numerous application contexts, including network design [7], 
social networks [20,21], DNA sequencing [22], enumerating chemical compounds [23], and phylogeny and evolutionary tree 
reconstruction [24,25].

We consider the realization problem on digraphs2: we are given as input a sequence of tuples (ri , IG(i), OG(i)), where 
ri is the reachability value,3 IG(i) the in-degree and OG(i) the out-degree of each node i, 1 ≤ i ≤ n in an n node graph 
G; and we wish to determine the existence of a digraph such that each node has the prescribed reachability value and 
the prescribed in-degree and out-degree. This formulation extends the local properties considered by degree sequences 
to global properties captured by the reachability sequence. Like all realization problems this has connections [8] to the 
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Fig. 1. Two non-isomorphic trees for the reachability sequence S = {1,1,1,2,3,3,4,8}.

Table 1
Reachability realization for unbounded out-degree DAGs is linear time. The other three cases are 
strongly NP-complete with bicriteria approximation algorithms achieving an approximation factor 
of (O (logn), O (logn)).

Out-degree

Bounded Unbounded

In-Degree
Bounded (Trees) (O (logn), O (logn)) (O (logn), O (logn))

Unbounded (DAGs) (O (logn), O (logn)) Linear-time

graph isomorphism problem and graph canonization. Apart from realization problems involving reachability values we also 
consider problems where instead of or along with the reachability values, we are also given either or both of the depth and 
height of nodes. Note that these are also global constraints similar to the reachability value, however we find that unlike 
reachability sequences depth and height realization are more tractable.

The study of reachability sequences has applications in several contexts. In the scientific context, reachability and degree 
constraints can reflect measurements obtained from naturally occurring networks with the aim being to generate a model 
that explains the measurements. Alternatively, from an engineering perspective, the goal may be to find an implementation 
satisfying the desired properties as specified by the reachability sequences. As an example scenario, consider the spread 
of a malicious virus in a network. Perhaps the first step to preventing the spread of this disease may be to understand 
the reach of infected nodes (using reachability values) before controlling the spread by disconnecting infected nodes from 
neighbors (using degree information). Alternatively, the engineering goal may be to construct resilient networks that restrict 
the spread of the virus.

Example 1. Does there exist a rooted tree whose reachability sequence equals the input sequence, S = {1, 1, 1, 2, 3, 3, 4, 8}, 
with each out-degree bounded by two?

Note that this sequence can be realized by two non-isomorphic trees. Both will contain A = {1, 2, 3} and B = {1, 1, 3} as 
subtrees but in one of the trees, A will be a child of 8 and B a child of 4 while in the other case it will be vice versa. (See 
Fig. 1.)

1.1. Our contributions

We characterize the complexity of the realizability of acyclic digraphs given sequences involving reachability values as 
summarized in Table 1. Instead of referring to bounded vs. unbounded in-degree, we simply talk about trees vs. DAGs since 
trees are DAGs with in-degree bounded by one and they capture the essential behavior of bounded in-degree digraphs. This 
usage makes the hardness results’ exposition more natural and is used henceforth.

• In Section 3.2 we give linear time verifiable, necessary and sufficient conditions, for realizing unbounded out-degree 
DAGs (Theorem 10).

• We define a notion of bicriteria approximation in Section 2 based on local consistency of the hierarchy structure and 
give two algorithms in Section 4 to solve the reachability realization problem, both achieving an (O (log n), O (log n))-
approximation.

– Theorem 14: Randomized LP rounding algorithm that runs in time O (n
37
18 ) if the matrix multiplication exponent 

ω ≈ 2 and its dual α ≈ 1 [26].
– Theorem 16: Deterministic algorithm using k-set packing heuristics [27,28] that runs in nO (k3) time.

• In Section 5 we prove the strong NP-completeness of reachability realization when there are degree constraints. This 
includes one of our most technically involved results, a reduction from a generalized version of 3-Partition to show the 
strong NP-completeness of reachability realization when both in-degree and out-degree are bounded (Theorem 21). We 
also give a simpler reduction from the 3-Partition problem for reachability realization when only one of in-degree or 
out-degree is bounded (Theorems 22, 24).
2



M. Dippel, R. Sundaram and A. Varma Theoretical Computer Science 866 (2021) 1–13
• For height and depth realization, we give polynomial time algorithms for tree realization when the input sequences only 
involve depth (Section 3.3) and/or height (Section 3.4). Further, as corollaries to our hardness results (in Section 5.6), 
we show that the reductions involving reachability sequences can be easily extended to sequences where reachability 
values and height and/or depth are given as input. Thus, the realization problems of height/depth alongside reachability 
are hard while without reachability, height and depth realization is easy.

Both approximation algorithms work in the presence of non-uniform degree bounds, that is, each degree might be a different 
value. On the other hand, our hardness results, except Theorem 24, prove that reachability realization problems are strongly 
NP-complete even when the degree bounds are uniform. Specifically, Theorems 21 and 22 which have uniform degree 
bounds rely on having the in-degree bounded while in Theorem 24, where only the out-degree is bounded, we are only 
able to show hardness in the non-uniform case.

1.2. Related work

The realization problems that we study are similar in flavor to wide range of well studied problems in graph theory. 
The most famous is the Erdos-Gallai graph realization problem [1] (a variant also addresses the realization problem for 
trees) which asks whether a given set of natural numbers occurs as the degree sequence of some graph; polynomial time 
algorithms are known for this problem [2,3]. On the other hand it is known that realizability of DAGs is NP-Complete [13]
with polynomial algorithms [11,29] for special cases.

Our problem can be considered a part of the class of well researched problems of reconstruction of a combinatorial 
structure from some form of partial information. Apart from the Erdos-Gallai theorem we already mentioned, a lot of 
work has been done on reconstruction of graphs [12,14,17–19] including collections of subgraphs [15,30] and realizability 
and uniqueness of graphs given invariants [8]. Beyond graphs, the problem of reconstruction of combinatorial structures like 
tournaments [16], trees [31,32] and matrices [33] have also been studied. More recent work has been done on reconstruction 
of sequences [34] and on reconstruction of strings from substrings [35].

Bartha and Bursci have addressed the problem of reconstruction of trees from frequencies of sub-trees sizes [36]. While 
their paper focuses on the reconstruction of unrooted trees given number of sub-trees of a given size, we look at the 
existence of rooted trees with a given sub-tree sequence. Our work is also different from works on phylogeny reconstruc-
tion [24,37] as those preserve distance measures between nodes while works on evolutionary trees [25] want subtrees 
homeomorphic to a given labeling of leaves.

2. Preliminaries

Let n denote the length of the given reachability sequence and V the set of nodes in the corresponding graph, so that 
|V | = n. For node i in graph G we let C(i) denote the set of children of i, i.e., C(i) = { j|(i, j) ∈ G}.

Definition 1 (Degree). The out-degree of i, OG(i) is the number of its children, i.e., |C(i)|; the in-degree of node i in graph 
G , IG(i) is the number of nodes with arcs directed into i.

Definition 2 (Reachability). The reachability value of node u is the number of nodes it can reach: ru = |{v : ∃ path from u to
v ∈ G}|. If the graph is a tree the reachability value ri can be recursively defined as 1 + ∑

j∈C(i) r j , this is the subtree size
of a node in a tree and when the context is a tree subtree size if often used interchangeably with reachability value.

Definition 3 (Height, Depth, Level). The height of a non-leaf node is one more than the maximum of the heights of its children 
and a leaf node’s height is zero. The depth of a node is the number of edges in the path from that node to the root. The 
set of nodes at a particular depth forms the level at that depth.

Definition 4 (Types of Trees). A rooted tree with out-degree upper bounded by k is called a k-ary tree otherwise they are
general trees. Full trees are k-ary trees where every out-degree is either k or 0. A complete k-ary tree is a k-ary tree with 
every level except possibly the last filled and all nodes in the last level filled from the left. The unique reachability sequence 
of such trees is denoted by T c

k (n). A degenerate tree is a tree which is just a path.

We now define the appropriate notions for the purpose of approximation.

Definition 5 (Degree consistency). We say that a graph G is δ-in-degree consistent with graph H if they have the same set 
of nodes and if for all nodes i the following holds: IH (i) ≤ IG(i) ≤ δ · IH (i). Here in-degree can be replaced with out-degree 
to get δ-out-degree consistency. If a graph G is both in-degree and out-degree consistent with graph H , then we say it is
δ-degree-consistent.
3
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Definition 6 (Reachability consistency). For ρ-reachability consistency we generalize the idea of reachability to get a similar 
notion of approximation as degree consistency. Given a tree we say that it is ρ-reachability consistent if for all nodes i the 
following holds: ri ≤ 1 +∑

j∈C(i) r j ≤ ρ ·ri , where ri the given reachability value for node i in the sequence. The above notion 
of approximation can be extended to DAGs by replacing the inequality constraint with ri ≤ OG(i) + max j∈C(i) r j ≤ ρ · ri .

Definition 7 (Bicriteria Approximation). We utilize the language of bicriteria optimization (see [38,39]) to say that G (ρ, δ)-
approximates graph H if it is ρ-reachability consistent with the reachability sequence of H and it is δ-degree consistent 
with H . This captures the intuition that G approximately matches both the degree structure of G and its reachability 
sequence.

2.1. Synchronized and unsynchronized realization problems

We take attributes of nodes of DAGs, namely the degree, the reachability, the depth, and the height of a node and 
consider the problem of the existence of DAGs which has a sequence4 of attributes that corresponds exactly to the given 
input. Most of our results consider two or more of these attributes for a node being available in a synchronized form, that is, 
the sequence is made of tuples consisting of attributes of a node. Sometimes we consider unsynchronized variants wherein 
we get multiple sequences one each for a particular attribute with no apriori synchronization or pairing of attributes to a 
particular corresponding node. More formally, these two variants problem variants can be defined as follows:

Definition 8 (Synchronized sequence). When a sequence of tuples made up of more than one attribute of the same node is 
given, then such a sequence is called a synchronized sequence. Refer to Example 2.

Example 2. Given a sequence of tuples of the form (reachability, depth): {(1, 4), (2, 3), (1, 3), (1, 3), (3, 2), (3, 2), (7, 1), (1, 1),

(9, 0)}, does there exist any DAG such that the sequence of such tuples is equal to the input sequence?

Definition 9 (Unsynchronized sequences). When multiple sequences are given, each corresponding to a different attribute of a 
node, then those sequences are called as unsynchronized sequences. Refer to Example 3.

Example 3. Consider sequences of reachability {1, 2, 3, 1, 1, 3, 7, 1, 9} and that of depth {4, 3, 3, 3, 2, 2, 1, 1, 0}, does there 
exist a DAG such that the reachability sequence and the depth sequence are equal to the input sequences?

In almost all cases the realization problems being considered will be synchronized, especially when degrees of nodes are 
involved and this will be clear in context. When we do consider the unsynchronized variant especially where height and 
depth of nodes are involved, they will be explicitly referred to as unsynchronized realization problems.

3. Exact polynomial-time algorithms

We now discuss the particular realization problem variants and the sub-classes of DAGs which can be realized in polyno-
mial time. These include some subclasses of trees where the reachability realization is polynomial time solvable (Section 3.1), 
a linear time algorithm for reachability realization in DAGs when there are no degree bounds (Section 3.2), an O (n) algo-
rithm for depth realization (Section 3.3) and an O (n log n) algorithm for height realization (Section 3.4).

3.1. Reachability realization in sub-classes of trees

1. Complete Trees: The complete tree on a given number of nodes n has a fixed structure. We just construct such a tree 
and then find the sequence. If on comparison they match, then we have a YES answer.

2. Degenerate Trees: For a sequence to correspond to that of a degenerate tree there should be exactly one instance of 
every number from 1 to n.

3. Subtree Sizes synchronized with rank: Suppose we are given the rank of the element as it would be in a binary search 
tree. This would allow trivial partitioning of the elements into either the left or the right subtree. That would divide the 
problem into two smaller problems. A divide and conquer method would then enable solving the problem in polynomial 
time. This variant sheds light on the fact that knowing how to partition is crucial in avoiding a combinatorial explosion, 
and together with the hardness reductions in Section 5 suggests the root cause of reachability realization to be many 
partitioning problems.

Note that these subclasses already come with specific degree restrictions. With minor modifications these algorithms 
suffice for realization problems on these variants when height and/or depth are present.

4 Keeping with the convention of the graph realization problem, we use the term sequence instead of a multiset which is technically more apt.
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3.2. Linear time algorithm for reachability realization in DAGs

We show that there exist polynomial-time verifiable, necessary and sufficient conditions that characterize reachability 
sequences of unbounded degree DAGs. This is reminiscent of conditions for the reconstruction of graphs given degree 
sequences (see [1]). However it is in contrast to the hardness result of degree realization for DAGs [11,13]. The inequalities 
in this section are deceptively simple considering the hardness results we prove in Section 5. Readers fond of puzzles are 
invited to prove the inequalities in Theorem 10 themselves before reading on.

Theorem 10 (DAG reachability). Given a reachability sequence of natural numbers {r1, r2, . . . , rn} in non-decreasing order the given 
sequence can be realized as a DAG iff ri ≤ i for all i.

Proof. In a DAG, nodes can only reach nodes with a strictly lower reachability otherwise its reachability would increase to 
a higher value causing a contradiction. Since there are at most i − 1 nodes of lower reachability than ri , it can reach at most 
i nodes including itself. Hence ri ≤ i is a necessary condition. Next, for all i, connect i to the first ri − 1 nodes. Excluding 
itself, i cannot reach more than ri − 1 nodes since every node j it connects to can only connect to a node k with k < j but 
i is already connected to k. Hence it can reach exactly ri nodes and the inequality is a sufficient condition. �
3.3. Depth realization

Theorem 11 (Depth Realization). Given a Depth sequence of natural numbers {D1, D2, . . . , Dn}, the given sequence can be realized as 
a k-ary tree iff count(d + 1) ≤ k · count(d) for all d from 0 to n − 1, where count(i) is the frequency of i in the sequence.

Proof. Depth values are the level at which a node is present. Hence, the frequency of a particular value will be the number 
of nodes present in a particular level. In a k-ary tree, every node can have at most k children, so level d + 1 can accomodate 
at most k × count(d) nodes, where count(i) is a function that returns the frequency of i in the sequence. Thus the algorithm 
simply checks whether count(d +1) ≤ k ·count(d) for every d from 0 to n −1. If all conditions hold, a tree can be constructed, 
otherwise no tree exists.

We need O (n) time to find the frequency of all the depths and then check n conditions and hence the algorithm runs in 
O (n) time where n is the number of elements in the input sequence. �

Slightly modified conditions exist for the following sub-classes:

– Full k-ary tree: Additionally check: count(d) = k × a where a is any positive integer, for all d.
– Complete tree: The condition is count(d + 1) = k × count(d) for all d except possibly for the largest d.
– Degenerate Tree: Exactly one count of each value must be present.
– General Tree: count(i) ≥ 1 for all i less than the maximum.
– DAG with degree constraints: For all d less than the maximum,∑

i with depth=d OG(i) = ∑
j with depth=d+1 IG( j)

3.4. Height realization

To solve height realization, we use the fact that a node can have height h only if one of its children has height h − 1
implying that if a particular value exists in a given sequence then so would at least one instance of each value less than 
that. We define a strand of a node as a maximal path from the node to a leaf and use this notion to solve realization (see 
Fig. 2).

Theorem 12 (Height Realization). Given a Height sequence of natural numbers {H1, H2, . . . , Hn}, there is an O (n) time algorithm to 
determine if the sequence can be realized as a tree.

Proof. We use a greedy approach to divide the given sequence into maximal strands, by prioritizing strand length. So, first 
the root will get a strand of its own. Then, the next biggest remaining height value will get a strand and so on until no 
elements remain in the sequence.

This is a unique division because for a node to get a height value of h, it has to have at least one child whose height is 
h − 1. Thus, a necessary condition for the existence of a tree is: if we get stuck at some point while making these strands 
then no tree can be constructed. Once these strands are constructed, we need to connect them together to get a tree, if 
possible. Any strand with its root’s value as h can only be attached as a child of a node whose height value is at least h + 1. 
A sufficient condition for a tree’s existence is whether there are enough places where strands can be joined.

These conditions can be made into an algorithm as follows: Make an array of the count of each value in the sequence in 
descending order. Note that since all height values lie between 0 to n, we can use bucket sort to do this in O (n) time and 
O(n) space. Then compute places = places + K × count(i) − count(i − 1) for all i. The places variable computes how many 
5
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Fig. 2. Dividing the sequence {5,4,4,3,3,2,2,2,1,1,1,1,1,0,0,0,0,0} into strands.

places are left at higher levels after this strand has been added. For a tree to be possible, places must stay non-negative 
throughout, otherwise, the last strand we added was invalid and no tree would be possible. �

Simpler algorithms exist for the following sub-classes:

– Complete K -ary: Here we can just make the unique complete tree on n nodes, make corresponding sequences and 
compare the two sequences.

– Full K -ary tree: places must be zero at the end of the loop.
– Degenerate Tree: Exactly one count of each value must be present.
– General Tree: count(i) ≥ 1 for all i less than the maximum.
– DAG with degree constraints: Additionally check that degree constraints are satisfied when creating and joining strands.

3.5. Realization of synchronized height and depth sequences

We can combine ideas from the methods to solve the height and depth problems to get an algorithm for solving the 
synchronized variant. Start by finding the strands ensuring that the depth values are assigned in order. Then put the roots 
of the strands at the correct depth. At every level check if a dedicated parent can exist for every strand that is rooted at 
that level. Do this in descending order of the root’s height values. If one cannot find a parent at any point, no tree exists, 
otherwise, a tree exists.

4. Approximation algorithms for reachability realization

We present two approximation algorithms that are ρ-reachability consistent and δ-degree consistent with ρ = δ =
O (log n) given the reachability sequence along with the degree sequence. Thus the (ρ, δ)-approximation factor for our 
algorithms comes out to be (O (log n), O (logn)). The randomized algorithm runs in O (nω+max{ 1

18 ,ω−2, 1−α
2 }) time as detailed 

in Section 4.1 while the deterministic algorithm runs in nO (k3) time as we detail in Section 4.2. Here, ω is the best known 
matrix multiplication exponent [40], α is its dual, and k is the maximum degree value. We compare further trade-offs be-
tween the two algorithms in Section 4.3 including the motivation for the more technically involved deterministic algorithm. 
While the exposition for both the algorithms addresses details using the full k-ary tree case, the results extend to all acyclic 
digraph cases in a straightforward manner by replacing reachability and degree consistency conditions for trees with that 
of DAGs.

4.1. LP based randomized rounding (LPRR) algorithm

The intuition behind the LPRR algorithm is to model the desired graph G as a collection of flows. Between every pair 
of nodes ri and r j with ri > r j we assume a flow f i j on each edge out of i and into j. We have three constraints for each 
node: the sum of flows into it is IG(i) (in-degree requirement), the sum of flows out of it is OG(i) (out-degree requirement), 
and that the reachability consistency conditions are satisfied. Finally, f i j = 0 (no edge) for nodes i, j if node ri ≤ r j .

min 1

s. t.
∑

j

f ji = IG(i) ∀i, In-degree requirement

∑
j

f i j = OG(i) ∀i, Out-degree requirement

ri = 1 +
∑

j

f i j · r j ∀i, Reachability consistency

f i j = 0 ∀i, j s.t. ri ≤ r j Acyclicity
6
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The LP is feasible as the graph G exists. After solving for a feasible set of f i j values we round each edge i j to 1 with 
probability f i j independently 24 ln n times. Each time an edge is rounded to 1 it is added to the solution (initialized to a 
graph with all nodes in V but no edges). We use concentration bounds to show that the resulting structure satisfies the 
approximate reachability and degree consistency requirements with high probability.

In particular, the following multiplicative form of the Chernoff bound is used.

Theorem 13. Let X = ∑n
i=1 Xi , where Xi are independent Bernoulli trials with Pr [Xi = 1] = pi ∀ 1 ≤ i ≤ n and let μ = E [X] =∑n

i=1 pi . For ε ∈ (0, 1)

Pr [|X − μ| ≥ ε] ≤ 2e−με2/3 (1)

Theorem 14 (LPRR). Given a reachability sequence for a full k-ary tree, T , there exists a randomized O (nω+max{ 1
18 ,ω−2, 1−α

2 })-time 
algorithm that constructs a DAG that is an (O (logn), O (logn))-approximation to T .

Proof. Analysis of running time: Clearly the bottleneck here is the LP solver and the state of the art solver runs in 
O (nω+max{ 1

18 ,ω−2, 1−α
2 }) time [26] where ω is the best known matrix multiplication exponent [40] and α is its dual. Fur-

ther, under the common belief that ω ≈ 2 and α ≈ 1, our algorithm runs in O (n
37
18 ).

Proof of correctness: First, observe that vertex i has a total flow of IG(i) coming into it. So in one rounding the expected 
in-degree will be IG(i) and after 24 ln n roundings the expected in-degree value will be μ1 = 24 ln n · IG(i). Invoking Chernoff 
bound with ε = 1/2 we get that the probability that the node’s in-degree lies outside the range [μ1/2, 3μ1/2] is at most 
2/n2. Similarly, we get the expected out-degree to be μ2 = 24 ln n · OG(i) and the probability that the out-degree of any 
node lies outside the range [μ2/2, 3μ2/2] is at most 2/n2. Further for any node i, the reachability 1 + ∑

j f i j · r j will have 
expected value μ3 = 24 ln n · ri and the probability that it lies outside the range [μ3/2, 3μ3/2] is at most 2/n2. Applying the 
union bound over the 3n constraints in the LP, the probability that any of them lies outside their prescribed range is at 
most 3n · 2

n2 = o(1) as n goes to infinity. Thus with high probability after rounding, all of the quantities are within their 
prescribed ranges, i.e., the degree and reachability consistency are guaranteed to be within a logarithmic factor giving us 
the required (ρ, δ)-approximation. �
4.2. k-set packing based deterministic algorithm

We give the intuition behind the algorithm, DSHS (Deterministic Sieving using Hurkens-Schrijver) before presenting 
the technical details. DSHS runs in two (essentially independent) sieving phases, each phase taking O (log n) rounds: The 
MatchChildren phase matches each node (other than the leaves) with a (valid) set of children. The MatchParent phase 
matches each node (other than the root) with a parent.5 Each phase starts with the entire set of candidate nodes and in 
each round sets up a (k + 1)-set packing problem. The problem of k-set packing is to find the largest disjoint sub-collection 
of a given collection of sets each of cardinality k. The (approximate) solution to this problem sieves or reduces the candidate 
set by a constant factor, allowing each phase to finish in O (log n) rounds. Putting the results from the two phases together 
we get the desired (ρ, δ)-approximation factor. We use the following improvement of Hurkens-Schrijver’s algorithm [28]. 
Note that a smaller ε improves the approximation but has a worse running time.

Theorem 15 (Theorem 5, Furer-Yu [27]; with ε = 1
3 ). The (k+1)-Set Packing problem can be approximated to a factor 3

k+2 in deter-

ministic time nO (k3) .

Theorem 16 (DSHS). Given a reachability sequence {r1, r2, . . . , rn} for a full k-ary tree, T , there exists a deterministic nO (k3)-time 
algorithm that constructs a DAG that is an (O (logn), O (logn))-approximation to T .

Proof. DSHS (Deterministic Sieving using Hurkens-Schrijver): The method has two phases, MatchChildren ensures that 
every node has exactly k children that satisfy the reachability consistency condition and MatchParent ensures that every 
node has at least one parent. Both use set packing and we show in our proof that the specific set packing instances solved 
ensure the approximation notion in the theorem statement. Before the phases start, we initialize using an empty DAG with 
all the n nodes and no edges.
Phase MatchChildren: Initialize C1 to be the set of all candidate nodes: nodes other than leaves (which have value 1). In 
round t the universe consists of Ct along with an entire set of V . Note that this has cardinality |Ct | + |V | and is not the 
same as Ct ∪ V . We create a collection of all possible (k + 1)-sets with each set consisting of an element i from Ct and k 
elements, j1, j2, . . . , jk from V such that ri = 1 +r j1 +r j2 + . . .+r jk . Note that each (k +1)-set is a possible match for i to its 
children. The existence of T guarantees that the optimal solution to this (k + 1)-Set Packing problem has size |Ct | – namely 

5 The root will have value n and leaves will have value 1.
7
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the sub-collection consisting of each candidate node and its k children in T . Invoking the Hurkens-Schrijver approximation 
algorithm from the above theorem we are guaranteed to find a collection of sets that is at least (3/(k + 2)) · |Ct |. We use 
this sub-collection of sets to augment our solution DAG with the corresponding arcs from the node i to each of its children 
( j1, j2, . . . , jk) for each set. We also remove the corresponding candidate nodes i from Ct to get Ct+1. Phase MatchChildren 
ends when the candidate set Ct is empty.
Phase MatchParent: Initialize P1 to be the set of all candidate nodes: nodes other than leaves. In round t the universe 
consists of Pt along with an entire set of V . Note that this has cardinality |Pt | +|V | and is not the same as Pt ∪ V . We create 
a collection of all possible (k + 1)-sets with each set consisting of one element, i from Pt and k elements from V , of which 
one, j is the parent and the remaining k −1 nodes j1, j2, . . . , jk−1 are siblings of i such that r j = 1 +ri +r j1 +r j2 + . . .+r jk−1 . 
Note that each (k +1)-set is a possible match for i to its parent j. The existence of T guarantees that the optimal solution to 
this (k + 1)-Set Packing problem has size |Pt | – namely the sub-collection consisting of each candidate node and its parent 
and siblings in T . Invoking the Hurkens-Schrijver approximation algorithm from the above theorem we are guaranteed to 
find a collection of sets that is at least (3/(k +2)) · |Pt |. We use this sub-collection of sets to augment our solution DAG with 
the corresponding arcs from the node j to i and to each of its k − 1 siblings for each set. We also remove the corresponding 
candidate nodes, i from Pt to get Pt+1. The Phase ends when the set Pt is empty.
Analysis of running time: The bottleneck step is the Hurkens-Schrijver approximation algorithm for set-packing which takes 
nO (k3) time. Both of the phases take a logarithmic number of rounds, log k+2

k−1
n to be precise, which is absorbed into the total 

nO (k3)-time since the big-O is in the exponent.
Proof of correctness: Note that after phase MatchChildren every eligible node is matched to exactly k children satisfying 
the reachability consistency condition exactly. However, some nodes may not have parents and some may have too many 
parents. Still every node is guaranteed to get at most one parent per round and so no node has more than O (logn) parents 
at the end of Phase MatchChildren. Similarly, after phase MatchParent every eligible node has at least one parent. However 
some parents may get too many children. Yet, in each round a parent gets at most k children and so no node gets more 
than O (k log n) children. Thus at the end of the two phases we are guaranteed O (log n)-degree consistency. Now observe 
that in each round of either phase, each node i either gets a valid set of k children, that is children j1, j2, . . . jk such that 
ri = 1 + r j1 + r j2 + . . . + r jk , or no children at all; and we know that at the end of Phase MatchChildren every node other 
than leaves gets at least one valid set of children. Hence, we are guaranteed an O (log n)-reachability consistent solution. 
Thus the solution DAG at the end of both phases is an (ρ, δ)-approximation to T . �
4.3. Trade-offs between the two approximation algorithms

The major trade-off between the DSHS and LPRR algorithms is the running time; while DSHS runs in nO (k3 ) , the LPRR 
algorithm is independent of k and runs in O (nω). Hence, unlike the deterministic algorithm, the randomized algorithm 
can be used even when k is a function of n. While these might suggest that the more complex and technically involved 
DSHS algorithm is inferior, that is not the case. The LPRR algorithm results in more complex solutions, in particular, LPRR 
may return digraphs with multi-edges while DSHS is guaranteed to return simple digraphs. Also, the multi-edges provide 
a tighter concentration of reachability consistency, albeit away from the reachability values, which may be a desirable 
property in applications where certainty is more important than consistency. While that is an important application, it 
is more common to require simple digraphs which the randomized algorithm cannot guarantee. This motivates the more 
technically involved DSHS algorithm.

5. Strong NP-completeness results

When the in-degrees and/or the out-degrees are constrained by the degree sequence we prove strong NP-completeness 
[41] using pseudo-polynomial transformations [42]. The reductions embed an instance of problems like 3-Partition between 
two consecutive levels of a tree. The most technically involved reduction proves the strong NP-completeness of the full k-ary 
tree realization problem (all in-degrees 1 or 0 and all out-degrees k or 0) in Section 5.3 which illustrates all the technicalities 
involved. This main reduction uses an intermediate problem called K-PwT which we prove is strongly NP-complete through 
a series of reductions in Section 5.1 and Section 5.2. We give a simpler reduction in Section 5.4 to prove that realization 
of general trees (no out-degree bound, all in-degrees 1 or 0) is also strongly NP-complete. In Section 5.5 we prove strong 
NP-completeness when there is only an out-degree bound (bounded out-degree DAGs).

5.1. NMTS-K is strongly NP-complete

We now prove the Strong NP-Completeness of the first of the two intermediate problems that are used in the reduction 
in Theorem 21.

Theorem 17 (Due to Garey and Johnson [42]). The NMTS problem stated below is strongly NP complete:
Given disjoint sets X and Y each containing m elements, a size function s : X ∪ Y 
→Z+ , and a target vector B = (b1, . . . , bm) ∈

Nm with positive integer entries, can X ∪ Y be partitioned into m disjoint sets A1, A2, . . . , Am, each containing exactly one element 
from each of X and Y , such that, 

∑
a∈A s(a) = bi , for 1 ≤ i ≤ m?
i

8
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NMTS (X, Y , s, B, m) refers to an instance of the NMTS problem characterized by the sets X and Y , a size function s, the 
target vector B and the cardinality of the target vector m.

Theorem 18 (NMTS-K). Given K ≥ 2 disjoint sets Xi each containing m elements, a size function s : ⋃
Xi 
→Z+ , and a target vector 

B = (b1, . . . , bm) ∈Nm with positive integer entries, it is strongly NP-complete to partition 
⋃

Xi into m disjoint sets A1, A2, . . . , Am, 
each containing exactly one element from each of Xi, such that, 

∑
a∈Ai

s(a) = bi , for 1 ≤ i ≤ m.

NMTS-K (K , Xi, s, B, m) is an instance of the NMTS-K problem characterized by the integer K , the K sets Xi , a size 
function s, the target vector B and the cardinality of the target vector m.

Proof. The NMTS-K problem is in NP since given a candidate partition Ai , we only need to verify that, 
∑

a∈Ai
s(a) = bi , for 

1 ≤ i ≤ m. We now construct an instance NMTS-K(K , Xi, s′, B ′, m′) of NMTS-K problem from an instance NMTS(X, Y , s, B, m)

of the NMTS problem using the following transformation for K ≥ 3 since for K = 2, the NMTS-K problem is the NMTS

problem. Note that this is a polynomial transformation since computing Equations (3), (4) and (5) can be done in polynomial 
time.

m′ = m, X1 = X, X2 = Y (2)

Xi are disjoint sets such that |Xi| = m′ for 3 ≤ i ≤ K (3)

s′(x) =
{

s(x) x ∈ X ∪ Y

1 otherwise
(4)

B ′ = (b′
1,b′

2, . . . ,b′
m) where b′

i = bi + K − 2, ∀bi ∈ B (5)

We now prove that a YES instance of the NMTS-K problem occurs iff a YES instance of NMTS occurs. Every partition 
for the NMTS problem is associated with a partition for the NMTS-K problem. We denote the elements of Xi for i ≥ 3 as 
xij, 1 ≤ j ≤ m and let Ai be the partition for the NMTS problem. The associated partition for the NMTS-K problem A′

i , is 
defined as follows: A′

i = Ai ∪ {x ji |3 ≤ j ≤ K }. This association immediately provides us with the equality: 
∑

x∈A′
i
s′(x) =

(
∑

x∈Ai
s(x)) + (K − 2) which we compare with the relation b′

i = bi + (K − 2) from Eq. (5). We get that 
∑

x∈A′
i
s′(x) = b′

i and ∑
x∈Ai

s(x) = bi either happen simultaneously or not at all. Thus, this association ensures that this is a valid transformation.
The maximum number in the constructed instance is either the maximum size from X and Y or K − 2 added to the 

maximum number from B; all of which are polynomially bounded in the maximum integer in, and the length of, the NMTS

instance, proving that NMTS-K is strongly NP-complete. �
5.2. K-PwT is strongly NP-complete

We now prove the Strong NP-Completeness of the second of the two intermediate problems that are used in the re-
duction in Theorem 21. The K-PwT problem can be regarded as a generalization of the 3-Partition problem where we are 
looking for a partition into K-sets and there are multiple targets to be reached instead of a single target.

Theorem 19 (K-PwT). Given a set X with |X | = Km, K ≥ 2, a size function s : X 
→Z+ and a target vector B = (b1, . . . , bm) ∈Nm

with positive integer entries, it is strongly NP-complete to partition X into m disjoint sets A1, A2, . . . , Am, each containing exactly K
elements, such that, 

∑
a∈Ai

s(a) = bi , for 1 ≤ i ≤ m.

K-PwT (K , X, s, B, m) is an instance of the K-PwT problem characterized by the set X , an integer K , a size function s, 
the target vector B and the cardinality of the target vector m.

Proof. The K-PwT problem is in NP since given a particular candidate partition Ai , we only need to verify that, ∑
a∈Ai

s(a) = bi , for 1 ≤ i ≤ m. We construct an instance K-PwT (K ′, X, s′, B ′, m′) of K-PwT problem from an instance NMTS-

K (K , Xi, s, B, m) of the NMTS-K problem.

M = KmM ′ where, M ′ = max
({s(xi)|xi ∈ Xi} ∪ {bi|bi ∈ B}) (6)

K ′ = K , X =
⋃

Xi (7)

For 1 ≤ i ≤ K and ∀x j ∈ Xi : s′(x j) = s(x j) + Mi (8)

B ′ = (b′
1,b′

2, . . . ,b′
m) where b′

j = b j + σ , ∀b j ∈ B and σ =
K∑

i=1

Mi (9)
9
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M is polynomially bounded by the maximum integer in the NMTS-K instance. The transformation is polynomial since 
equations (6) to (9) are polynomial-time computable. Now we show that a YES instance of the K-PwT problem occurs 
iff a YES instance of NMTS-K occurs. For ease of exposition, for the rest of the proof, we write all the numbers in K-

PwT (K ′, X, s′, B ′, m′) in base M . We make three remarks, the first: σ is a K + 1 digit number with a 1 in all its digits 
except the rightmost or 0th digit (Eq. (9)). The second, that every number s′(x) has a 1 as its ith digit, s(x) in its rightmost 
digit6 and 0 elsewhere. The third, a partition A j for the NMTS-K instance (

⋃
Xi ) is also a partition for the K-PwT instance 

(X), irrespective of whether either of them solve the respective problems or not. We’ll prove first that if A j is a partition 
that solves the NMTS-K problem, then it also solves the K-PwT problem.

Let A j be a partition that solves the NMTS-K problem. Using the same partition and Eq. (8) and (9), we get that ∑
x∈A j

s′(x) = ∑
x∈A j

s(x) + ∑K
i=1 Mi = ∑

x∈A j
s(x) + σ = b j + σ = b′

j . This proves that if A j solves the NMTS-K problem, 
then it also solves the K-PwT problem.

To prove the converse, let A j be a partition that solves the K-PwT problem. We know that 
∑

x∈A j
s′(x) = b j + σ , 

which implies that 
∑

x∈A j
s(x) + ∑

i

∑
x∈Xi∩A j

Mi = b j + σ (from Eq. (8)). This in turn implies that 
∑

x∈A j
s(x) = b j and ∑

i

∑
x∈Xi∩A j

Mi = σ = ∑K
i=1 Mi since s(x) does not contribute to σ (from the first two remarks and Eq. (9)). Given ∑

i

∑
x∈Xi∩A j

Mi = ∑K
i=1 Mi , equating the coefficients of the powers of M , we get that |Xi ∩ A j | = 1, ∀i, j which says that 

every set in the partition contains exactly one element from each of the sets Xi . We already know from the earlier equations 
that 

∑
x∈A j

s(x) = b j . Thus, the partition A j is a solution to the NMTS-K problem as well.
The maximum integer in the K-PwT instance created by the transformation, σ + max(b1, . . . , bm), is bounded (from Eq. 

(6)) by a polynomial in the maximum integer in, and the length of, the NMTS instance, which by the definition of strong 
NP-completeness makes this is a pseudo-polynomial transformation. Thus, K-PwT is strongly NP-complete. �
5.3. Hardness of realization for full k-ary trees

We prove hardness of the realization problem for full k-ary trees by reduction from the K-PwT problem, which we show 
to be strongly NP-complete via an involved series of reductions in the full version. Since K-PwT is strongly NP-complete we 
can reduce from a subclass, �p , such that the largest number in the instance is polynomially bounded, formally, Max[I] ≤
p(Length[I]), ∀I ∈ �p .

Problem 20 (K-PwT). Given a set X with |X | = Km, K ≥ 2, sizes s : X 
→Z+ and a target vector B = (b1, . . . , bm) ∈Nm , can 
X be partitioned into m disjoint sets A1, A2, . . . , Am , such that, |Ai | = k and 

∑
a∈Ai

s(a) = bi , for 1 ≤ i ≤ m?

Theorem 21 (Full k-ary tree). It is strongly NP-complete to determine whether a given reachability sequence can be realized as a full 
k-ary tree.

Proof. The problem is clearly in NP since a tree acts as a certificate. Set k = K and define a number M which is a power 
of K, is much greater in magnitude than any of the other numbers in the problem, and is polynomially bounded by the 
maximum integer in the K-PwT instance (Eq. (10)). We also define m′ and m′′ such that m + m′ and m + m′′ are powers of 
K (Eq. (11)).

M1 = max
({s(xi)|xi ∈ X} ∪ {bi|bi ∈ B}); M2 = KmM1; M = K �logk M2� (10)

m′ = K d − Km, m′′ = K d−1 − m = m′/K , where d = �logK (Km)� (11)

We make the sequence S = C ∪ P ∪ G ∪ D using four “component” sequences: the “child component” C = C ′ ∪C ′′ , the “parent 
component” P = P ′ ∪ P ′′ , the “ancestor component” G and the “descendant component” D.

The “child component” C is the union of the C ′ and C ′′ while the “parent component” P is the union of the P ′ and 
P ′′ . C ′ is in one-to-one correspondence with X , using the sizes of elements from X with M added to them while P ′ is in 
one-to-one-correspondence with B with changes to accommodate those made while making C ′ . The sets C ′′ and P ′′ ensure 
that the cardinality of C and P respectively are a power of K .

We construct the “ancestor component” in “levels”. The lowest level ld−2 is constructed from P , by arbitrarily taking 
blocks of K elements, adding them all up and incrementing the result by one. Formally, order the elements in P arbitrarily 
as P1, P2, . . . , P K d−1 and let ld−2 = {ld−2,i | ld−2,i = 1 + ∑K

j=1 P (i−1)K+ j, 1 ≤ i ≤ K d−2}. Other levels ld−i are constructed in 
a similarly from levels ld−i+1. This is continued until l0 which has only one element since |P | is a power of K and the 
size of each level above reduces by a factor of K . The element in l0 would be the largest number in the final instance. 
The “descendant component” is constructed using reachability sequences of complete trees on the elements ci ∈ C . For each 

6 Follows from Eq. (8) and M being greater than any number in the NMTS-K instance.
10
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such ci , we make a complete k-ary tree on ci nodes and use its reachability sequence T c
k (ci). The descendant component is 

then D = ⋃
i T c

k (ci). Since each ci ∈ C has the form K x + 1, T c
k (ci) will also be full trees.

C ′ = {
K (s(x) + M) + 1

∣∣ x ∈ X
}
, C ′′ = { m′times︷ ︸︸ ︷

K M + 1, . . . , K M + 1
}

(12)

P ′ = {
K (bi + K M + 1)

∣∣bi ∈ B
}
, P ′′ = { m′′times︷ ︸︸ ︷

K 2M + K , . . . , K 2M + K )
}

(13)

G =
d−2⋃
i=0

li, where “levels”li are defined in text; D =
K d⋃

i=1

T c
k (ci), ∀ci ∈ C (14)

Constructing S takes polynomial time as elements in P and C are derived directly from the K-PwT instance, there are 
a logarithmic number of levels each computed in polynomial time, and the polynomial number of trees in D each be 
computed in linear time.

By construction, elements in G and P will form a partial full k-ary tree with the elements in P as the “leaves”, elements 
in C and D will make a forest with elements from C as roots of the trees in the forest, and C ′′ can be arbitrarily partitioned 
to connect to P ′′ elements. If there is a partition of X , we can partition C ′ accordingly to complete the tree.

To prove that a full k-ary tree implies a partition it is sufficient to prove that in any tree the set of children of P ′ is equal 
to C ′ , that is, the nodes of P ′ and C ′ occur in consecutive levels in any tree. The node in l0 is the largest and will necessarily 
have to be the root. This will be followed by the nodes from l1 since no other nodes are large enough to reach those in l0
(given the out-degree bound of k). Continuing the argument, li ∈ G will always appear in consecutive levels in any tree and 
that P will follow below G . Since the in-degree is 1 no node from p ∈ P will be a child of any p′ ∈ P . Further, nodes in D
will all be less than M/K in value and hence k of them will not be enough to reach nodes in P thus necessitating that all 
children of nodes of P come from C . We note that nodes from C ′ can not be children of nodes from P ′′ and so the set of 
children of P ′′ have to be C ′′ . Since a value of the order of K M has to be reached for nodes in P ′ and all nodes in C ′ are of 
the order of M , all the nodes from C ′ will be used. Thus any tree will have nodes from P ′ and C ′ in consecutive levels and 
therefore have a partition. This proves NP-completeness and as the maximum integer used is polynomially bounded it also 
proves strong NP-completeness. �
5.4. Hardness of realization for general trees

Theorem 22 (General Trees). It is strongly NP-complete to realize a general tree given a reachability sequence.

Proof. This problem is in NP as a tree acts as a certificate and all that remains is give a reduction from 3-Partition.

Problem 23 (3-Partition). Given a set A, a target B and a size function s : A → Z+ such that |A| = 3m and B/4 < s(ai) <
B/2 ∀ai ∈ A, can A be partitioned into m disjoint sets A1, A2, . . . , Am , such that for 1 ≤ i ≤ m, 

∑
a∈Ai

s(a) = B?

Since this problem is strongly NP-complete [43], for the reduction, we use an instance of 3-Partition wherein the 
numbers are polynomially bounded in the input length. The notation [n] is used for the set of the first n natural numbers. 
The constructed instance is:

S = {m(B + 1) + 1} ∪ {B + 1, . . . m times . . . , B + 1} ∪
( m⋃

i=1

[s(ai)]
)

This construction is clearly polynomial time, all that remains is to show that this is valid reduction. In an abuse of notation 
the reachability size is often used to refer to the node with that reachability size.

In any potential tree, then the m(B + 1) + 1 node is forced to be the root as it cannot be the child of any node. Further, 
it will have m children, all the B + 1 nodes as they cannot be the children of any other node. Considering the remaining 
nodes in a bottom up fashion, we see that a fixed structure is enforced on all these nodes due to the in-degree constraint 
in rooted trees. Any 2 node can only have a 1 as it’s child, exhausting all 1’s and leaving only 2’s to be single children of 3’s 
and only 3’s as children for 4’s and so on. By construction, there are exactly as many nodes of size s − 1 as there are nodes 
of size s for all s < B + 1 and hence they all get exhausted. This enforces that each node labeled s(ai) is a root of a path 
consisting of nodes with sub-tree sizes [s(ai)].

These restrictions are always present and a tree can be realized iff the paths rooted at s(ai ) can be correctly made 
children of the B + 1 nodes. This happens iff there is a partition of the 3-Partition instance without which the paths cannot 
be joined to the partial tree above it. �
11
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5.5. Hardness of realization with out-degree constraints

Theorem 24 (Bounded out-degree). It is strongly NP-complete to realize an acyclic graph given a reachability sequence and out-degree 
constraints.

Proof. We reduce from 3-Partition, again using an instance with the maximum number polynomially bounded in the 
length of the problem. Let si := s(ai) and M := mB2 and note that M is much bigger than every number in the 3-Partition

instance and that the 
∑

i si = mB . Let the reachability sequence S := Ss ∪ Sb ∪ Sa where Ss = {Msi}, Sb be a multiset with 
m copies of M B + 1, and S1 be a multiset of mB − |A| copies of 1. Let the out-degree constraint for M B + 1 nodes be equal 
to three and for the si nodes be equal to si .

To achieve out-degree constraints, each of the si nodes needs to pick up si − 1 ones exhausting nodes in S1. For the 
M B + 1 nodes to satisfy degree requirement they’ll have to pick up exactly three nodes from Ss set which is possible iff 
there is a valid partition of the 3-Partition instance. �
5.6. Hardness corollaries of depth and height with reachability

Corollary 25. Since depths were implicitly enforced in our reductions, a straightforward modification shows that both the synchronized 
and unsynchronized sequences of reachability and depths are NP-Complete.

Corollary 26. Both the synchronized and unsynchronized sequences of reachability and heights are NP-Complete.

Proof. The same reduction for reachability can be used to prove this corollary by making implicit height values explicit. The 
reduction already ensures that nodes in the descendant component have a fixed structure. Combined with our definition 
of the big number M and the coefficients used this ensures that we know all height values in the tree. Since these can be 
determined via construction we simply explicitly use them in the reduction which would prove this corollary. �
Corollary 27 (From Corollary 25 and Corollary 26). Synchronized and unsynchronized sequences of heights, depths and reachability 
are NP-Complete.

6. Conclusion

In this paper we initiate the study of the realization problem for DAGs and rooted directed trees given reachability 
sequences, depth sequences and height sequences. We also consider synchronized or unsynchronized combination of these 
attributes, particularly with degree constraints added onto the reachability realization problem. We provide a linear time 
algorithm for DAGs with unbounded out-degrees and show hardness results for variants when we are also given a degree 
sequence bounding the in-degree and/or out-degree. We define a notion of bicriteria approximation based on reachability 
and degree consistency and give two (O (log n), O (log n))-approximation algorithms for all of these problems. For the depth 
and height realization problems, we gave algorithms and showed hardness results when combined with the reachability 
values.

Realization problems based on these global invariant properties are a rich area for study with many other interesting 
avenues. All of our results showcase the interplay between local node properties like degree and the global node proper-
ties like the reachability values and we believe that studying other properties can lead to new insights between various 
graph properties and structures. One future direction that is closely related to our work is understanding realization of 
in-reachability sequences (in-reachability value is the number of nodes that can reach a given node). Another direction for 
future work is the tightness of approximation of our current algorithms. It would be illuminating to either find algorithms 
with better approximation factors or come up with hardness of approximation results to prove tightness of approximation 
of the existing algorithms. A different direction that has not been considered until now is an active learning setting where 
we are allowed to ask queries on top of having reachability sequences, similar to the work in [44–46]. Such learning aspects 
are important in contexts where the reachability sequence is being updated dynamically.

Apart from these broader directions, the realization problems introduced in this work still have many directions for 
future research with many concrete questions that remain open. We conclude with some intriguing conjectures:

– Conjecture: The LPRR algorithm can be derandomized using the method of conditional probability [47] in a manner that allows 
eliminating multi-edges in the algorithm’s solutions. This would allow combining the best features of the two approximation 
algorithms that we have presented.

– Conjecture: The unsynchronized height and depth realization problem is strongly NP-complete. Proving or disproving this con-
jecture can lead to a better understanding of how the depth and height of trees combine to inform the structure of the 
tree.

– Conjecture: Given a uniform out-degree bound and a reachability sequence, the DAG realizability problem is solvable in polynomial 
time. Our hardness result is for a non-uniform out-degree bound and we believe that the non-uniformity is necessary 
for hardness.
12
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– Conjecture: The general digraph reachability realization problem (with or without degree sequences) is strongly NP-complete. All 
of our results were for acyclic graphs and we believe that addition of cycles will only make the problem harder.
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