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Motivation
Counterfeit Medicinal Supply Chains

5670 Billion 90% >500,000
Worldwide annual sale of . .
. . Increase in counterfeit Annual death toll caused by
counterfeit drugs and medical . .
medicine over 5 years counterfeit drugs
products

Proposal: Remote Tagging Systems

Response: the mea-

Tag: a physical arrange- }< Createa

ment of special material

Measure

This requires disambiguating configurations of materials given their measured properties.
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Why not existing technologies?

Authentication systems <— plethora of desirable properties === current technologies.

Undesirable properties

Line of Sight 'l 5 Difficulty in integration — &=

Radiation Forging/Tampering

Range limits Actively powered J\/a)
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Magnetic Microwires (MWSs) and their useful properties

Unique core-shell composite structure

o Core: soft magnetic (CoFe)SiB amorphous
alloy

@ Shell: pyrex glass cover —-
Bio-compatibile

Glass cover

@ Diameter ~5-60 microns

@GR S-BIEE e |lI®  Promising functional response properties
glass core @ Ultra-soft ferromagnetism

Figure: SEM micrograph of glass-coated microwire.? ® Unique magnetism:stress correlation
@ Electromagnetic interactions

aVézquez, M. (2007). Advanced Magnetic Microwires, Handbook of
Magnetism and Advanced Magnetic Materials, J. Wiley Vol. 4, 2192-2222
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MWs have sensitive Sy; response in 1-5 GHz range
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Figure: Schematic of experimental apparatus to 1 2 3 4 5
Frequency (GHz)
measure the Sp; response of arrays of MWs. quency

Figure: The configurations are two parallel 4 cm
wires with different separations between them.
e Tag/Configuration: the physical arrangement of the MWs on the measurement platform.
@ S»; Response: the microwave radiation absorption profile exhibited by a configuration.
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The Problem

Problem statement

Given a measurement function, generate many tags such that the corresponding responses can
be disambiguated.

Difficulties

@ The measurement function is:

@ defined by nature (we have no control it);
@ is complex (has no closed form equation).

@ These two factors eliminate the use of most classical tools from computer science.

Solution (rest of the talk)
o We'll present our deep neural network model to solve this problem.

@ Technical details for simulating the measurement function, a key part of our model.
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Dispersive Autoassociative Neural Networks (DANN)
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Figure: The Dispersive Autoassociative Neural Network architecture.

This needs the ability to simulate the measurement function, our focus for the rest of the talk.
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Simulating the measurement function

pone [ CoIIect(
F————

300 (microwire configuration, signature) pairs ]
Data

o .
90% for training 10% for testing

( Predict on unseen data )

Match predictions
to true signature.

Deep N [N k
eep Neural Networ Testing with trained model

4//”/////

E E E : Training error  Test error
E S E . 0.06 = 0.005 0.08 +0.007
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Testing: Plot of actual responses

Figure: Actual Response (blue) for various unseen tag configurations
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Testing: Plot of actual responses vs. our predictions

Figure: Actual Response (blue) and Predicted Response (orange) for various unseen tag configurations
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Handling different environments

New environment

e 7y | Collect . . . . .
o T{ New (microwire configuration, signature) dataset ]
ata

Neural Network trained

. . . Testing on unseen
on original environment esting on unseen dataset

}
e Original test error New test error
T 0.06 =+ 0.007 0.18 +0.08
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Handling different environments using fine tuning
New environment

s s Collect : : 3 i i
T»[ New (microwire configuration, signature) dataset ]
ata

30-50 pairs

A few pairs set
aside for fine-tuning.

Neural Network trained

] [ Testing on everything else ]
on original environment

Fine-tuning the network

o : ® °
E E E : Testing on rest
vy v ~~
L
Original test error New test error New test error (+fine-tuning)
0.06 £+ 0.007 0.18 £0.08 0.09 £ 0.008
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Takeaways and next steps

Takeaways
@ We are able to simulate the measurement function for magnetic microwires.
@ Our model can adapt to changes in environment.

@ Preliminary results: DANN gets 10-100x configurations compared to naive approaches.

Next steps
@ Ongoing: DANN — generate a large set of MW tags.
@ Open: Use other materials like DNA, fluorescent dyes, opto-chemical inks, etc.

@ Open: Design a combination of materials that gives the best disambiguation ability.

Use the QR code to visit our group's website:

We would like to acknowledge funding from
https://disrpt.sites.northeastern.edu

Northeastern University's Intramural Tier 1 Award
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