J. Parallel Distrib. Comput. 118 (2018) 213-232

Contents lists available at ScienceDirect

PAR/ D
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Let’s HPC: A web-based platform to aid parallel, distributed and high
performance computing education

Check for
updates

Bhaskar Chaudhury **, Akshar Varma?, Yashwant Keswani ¢, Yashodhan Bhatnagar?,

Samarth Parikh?

2 Group in Computational Science and HPC, DA-IICT, Gandhinagar, India

b DA-IICT, Gandhinagar, India

HIGHLIGHTS

An open platform to supplement conventional classroom oriented HPC and PDC education.
Allows in-depth performance analysis from a system’s perspective using over 20 parameters.
Facilitates variability analysis for each parameter using highly customizable plots.
Streamlines entire workflow using automated scripts and structured report generator.

Data Repository with performance data of many implementations and architectures.

ARTICLE INFO

ABSTRACT

Article history:

Received 15 June 2017

Received in revised form 6 February 2018
Accepted 26 February 2018

Available online 20 March 2018

Keywords:

HPC education

Parallel & distributed programming
Performance analyzer

Multicore architecture

HPC database

Let’s HPC (www.letshpc.org) is an evolving open-access web-based platform to supplement conventional
classroom oriented High Performance Computing (HPC) and Parallel & Distributed Computing (PDC) edu-
cation. This platform has been developed to allow users to learn, evaluate, teach and see the performance
of parallel algorithms from a system’s viewpoint. The Let’s HPC platform’s motivation comes from the
experiences of teaching HPC/PDC courses and it is designed to help streamline the process of analyzing
parallel programs.

At the heart of this platform is a database archiving the performance and execution environment
related data of standard parallel algorithm implementations run on different computing architectures
using different programming environments. The online plotting and analysis tools of our platform can
be combined seamlessly with the database to aid self-learning, teaching, evaluation and discussion of
different HPC related topics, with a particular focus on a holistic system’s perspective. The user can
quantitatively compare and understand the importance of numerous deterministic as well as non-
deterministic factors of both the software and the hardware that impact the performance of parallel
programs. Instructors of HPC/PDC related courses can use the platform’s tools to illustrate the importance
of proper data collection and analysis in understanding factors impacting performance as well as to
encourage peer learning among students. Scripts are provided for automatically collecting performance
related data, which can then be analyzed using the platform’s tools. The platform also allows students to
prepare a standard lab/project report aiding the instructor in uniform evaluation. The platform’s modular
design enables easy inclusion of performance related data from contributors as well as addition of new
features in the future.

This paper summarizes the background and motivation behind the Let’s HPC project, the design
philosophy of the platform, the present capabilities of the platform, as well as the plans for future
developments.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

1. Introduction

Imparting effective Parallel and Distributed Computing (PDC)
education to undergraduate students within a limited time-frame

E-mail address: bhaskar_chaudhury@daiict.ac.in (B. Chaudhury). (e.g. one core course or an elective course) is always a challenging

https://doi.org/10.1016/j.jpdc.2018.03.001
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.03.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.03.001&domain=pdf
http://www.letshpc.org
mailto:bhaskar_chaudhury@daiict.ac.in
https://doi.org/10.1016/j.jpdc.2018.03.001

214 B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

task because it involves teaching both the software as well as
the hardware aspects of High Performance Computing. The main
challenge is to make sure that after successfully completing an
HPC/PDC focused course, a student understands the practicalities
of doing HPC to achieve the maximum possible performance out
of a particular system for a particular problem. This goal can be
achieved only through well designed courses which simultane-
ously provides theoretical knowledge of parallel algorithms along
with a set of well thought out programming assignments to impart
the practical aspects of HPC/PDC. This need for keeping an eye on
the practical aspects is best described by the quotation - “In theory,
there is no difference between theory and practice. But, in practice,
there is.” - attributed to Jan L. A. van de Snepscheut and/or Yogi
Berra.

Most of the efforts towards the development of curricula in
PDC for undergraduate courses and fostering HPC education have
been supplemented by educators in the form of sample lectures,
tutorials, modules, books, software, recommended assignments,
sample exercises, problem sets etc. [14,24,33,37,40,42,49]. These
initiatives are primarily focused on the important areas of algo-
rithm design, programming and computer architecture, and aid in
introducing key parallelism concepts such as concurrency, depen-
dency, tasks, threads, problem decomposition, data parallelism,
recursion, synchronization, race conditions, resource sharing etc.
to undergraduates [22,38]. These efforts have significantly helped
in popularizing PDC education at undergraduate level throughout
the world. However, classroom based teaching that focuses mainly
on theoretical aspects and book based concepts is not enough to
fully convey the intricacies of HPC/PDC to students.

Theory of parallel algorithm design or theory of parallel com-
puting is based on abstract concepts of time and memory which
may ignore real life constraints for simplicity, and therefore not
take into account non-deterministic and hardware factors [42,51].
The performance of a computer program depends on a wide range
of factors like the nature of the algorithm, the machine (several
hardware factors), compiler optimizations, the runtime environ-
ment, the input, the measurement methodology etc. and their
mutual interaction [13,35,48]. These system dependent aspects are
difficult to impart from a pedagogical point of view using solely
lectures and material from books [4,36,39]. Even if one perfectly
understands the behavior of a program and the properties of the
targeted hardware system, one cannot confidently predict the
behavior of the program on the system without actually evalu-
ating the program in the given software environment-hardware
setting. For example, theoretical concepts like Amdahl’s law put
a linear limit on the speedup, while certain implementations can
achieve superlinear speedups due to factors like optimal cache
utilization [3,26,27,35]. Therefore, there is a clear gap between the-
oretical learning, implementation, and understanding/analyzing
the effect of non-deterministic factors on the performance of a
program. A well-rounded PDC education should provide students
with the required theoretical knowledge and at the same time
help them deal with the various system dependent factors. It is
important for a student to understand the HPC concepts from a
system'’s perspective (as mentioned above, taking into account all
of the behaviors of a system as a whole) because systems are
in general non-terminating and non-deterministic, whereas the
behavior of algorithms is terminating, deterministic and platform-
independent [46].

Further efforts and new methodologies are required to educate
competent undergraduate students to learn parallel programming
from the whole system’s perspective. We require effective student-
centric tools and resources to help students in understanding how
all components of the complex HPC ecosystem interact and func-
tion. There have been efforts in addressing these issues but they all
tend to focus on a subset of the HPC ecosystem rather than provid-
ing students with a holistic perspective. For example, some of the

recent efforts include works oriented towards providing students
with better, more intuitive execution environments [16,25,34],
libraries [17,23], interfaces [18], and simulators [7,53] for parallel
and distributed programming. Other works focus on simplifying
and explaining parallel computation [8,45] and concurrency [9,41]
concepts to students. There have also been productivity oriented
works, that aid students and instructors in the submission and
evaluation of HPC programs [21,32,44,47]. While these are all im-
portant and useful, they have been made to address some specific
issue, and none looks at the HPC ecosystem from the system'’s per-
spective. To the best of our knowledge, the web-based platform of
Let’s HPC is the first that provides tools for data-collection, plotting
and analysis of performance of PDC programs while focusing on
providing users with the whole system’s perspective.

The need for resources that aid the process of analysis from
a system perspective has been observed while imparting courses
on HPC and Parallel Programming at our institute. It has been re-
ported that evaluation in HPC/Parallel Programming courses need
to focus on lab assignments and projects as much as on conven-
tional exams that test students’ theoretical understanding [10]. Lab
assignments and projects are natural mechanisms for evaluation
that allow students to analyze and realize the impact of various
hardware/software/programming environment factors (system'’s
perspective) on the performance of their own code. However,
based on our experience, properly analyzing performance and
learning to improve parallel implementations requires students to
do tedious and mundane work (e.g. data collection and plotting)
that does not directly contribute to HPC/PDC knowledge.

Our web-based platform (www.letshpc.org) aims to address
these difficulties using an array of tools that streamline the process
of analysis starting with automatic execution of parallel code,
collection of required performance data, online plotting and anal-
ysis tools that help users to better understand various aspects
impacting performance from the whole system viewpoint [30,50].
Our tool has been designed in a modular manner that allows
addition of more advanced analysis tools and to improve existing
tools without disturbing the platform’s usage. While the Let’s HPC
platform has been built keeping in mind all the stakeholders in
the HPC community, it has been motivated for streamlining the
pedagogical process of HPC/PDC and hence is particularly useful
for HPC course instructors and students. At present, we expect that
a user has acquired a basic understanding of parallel algorithm
design and can do some amount of “thinking in parallel”, before
the user starts using the tool.

The rest of this paper is structured as follows: Section 2 briefly
describes our experiences of integrating PDC topics into our under-
graduate curriculum and how that motivated the development of
the Let’s HPC platform. Section 3 describes the design philosophy of
the Let’s HPC platform and details how it can be useful for various
stakeholders in the HPC community. Section 4 gives an overview of
the website, the internal structure of the platform and the analysis
tools. In Section 5 we demonstrate the platform’s usefulness in
performance analysis of problems using example case studies.
The important findings regarding the effectiveness of the platform
based on our course evaluation survey and user experiences are
presented in Section 6. Section 7 summarizes all the features of the
Let’s HPC platform, and finally, Section 8 has concluding remarks
including the current status, ongoing work and the future plans for
the Let’s HPC project.

2. Background and motivation

As an Early Adopter of the NSF/IEEE-TCPP curriculum initiative
on Parallel and Distributed Computing [37], we have undertaken
a long term multi-year effort to integrate PDC topics into core
and elective courses throughout the undergraduate programs in

http://www.letshpc.org

B. Chaudhury et al. / J. Parallel Distrib. Comput. 118 (2018) 213-232 215

ICT (Information and Communication Technology) and ICT with
minor in CS (Computational Science) at DA-IICT, India. ICT and CS
focused undergraduate programs at DA-IICT have been thought-
fully designed to integrate disciplines such as Computer Science,
Electronics & Communication, Information Technology, Natural
Sciences, Humanities and Design, making it quite broad in scope.
Therefore ICT/CS graduates have certain performance capabilities
not found in conventional graduates from any of the individual
disciplines.

During the first two years (semesters I-IV) of the undergrad-
uate programs at DA-IICT, students have to take core courses in
Programming, Calculus, Discrete Mathematics, Algebraic Struc-
tures, Computer Architecture and Organization, Object-Oriented
Programming, Data Structures, Signals & Systems, Probability &
Statistics, Algorithms, Systems Software, and various courses in
Communication and Electronics. These courses provide a broad
foundation and are helpful prerequisites to understand PDC topics
as well as its applications. The course contents of most of the above
mentioned courses are inline with the ACM Computer Science
Curriculum guidelines [28] and several of these courses have sig-
nificant lab components; however, the syllabi are focused on single
processor and sequential programming. Since these technological
courses are introduced from the very first semester, the students
quickly gain the necessary background to specialize and explore
specific sub-areas in the later part of the program via elective
courses. Keeping in mind future technological shifts and to encour-
age the scope of specializing into specific sub-areas such as PDC, as
a first step we introduced an elective course titled Introduction to
GPU Programming (IT477) for B.Tech (ICT) students (Semester VII)
in 2014. Next year, in 2015, we introduced a core course titled High
Performance Computing (CS301) for the students (Semester V) of the
B.Tech (Hons. in ICT with minor in CS) program.

In the following subsections, we briefly describe the design &
implementation strategy of our PDC courses (particularly the core
course CS301). This provides the background for some important
findings as well as experiences gained after teaching the course
consecutively for two years. The difficulties faced, and the lack
of tools or resources present to address them inspired the devel-
opment of an in-house platform to supplement teaching of HPC
courses at our institute. The general nature of our findings and
the difficulties faced provided motivation for the Let’s HPC project,
which we have designed in a general manner, as discussed in
Section 3.

2.1. Course design and implementation

Before designing and finalizing the course contents of our PDC
focused courses, we did an extensive study of the available lit-
erature on guidelines and strategies for integrating parallelism
into CS undergraduate curriculum [1,11,12,15,37]. This helped us
in understanding what are the most important HPC skills a stu-
dent should learn at an undergraduate level, and the possible
ways to provide opportunities to “think in parallel” by giving
adequate lab assignments and projects. However, the limitation
of including only one core course on PDC in the undergraduate
curriculum made us realize that the best strategy is to tailor the
course contents/implementation according to the background of
the students.

Our main objectives from such a course are two-fold. First, to
provide sufficient practical exposure in HPC and hands on de-
velopment experience to students in order to strengthen their
design and implementation skills. Second, to equip students to
understand and analyze the performance of their parallel codes
from a system’s perspective. With these primary objectives in
mind, the course categorizes [1,31] the major application areas and
important parallel patterns (algorithms) from the domains of CS

and ICT. Case studies in lectures and lab assignments are designed
in a way which gives enough scope to the students to understand
the concepts in more details. The most important parallel pro-
gramming concepts necessary to implement these algorithms are
covered early on. This enables students to start working on their
own implementations and analyzing their performance as early as
possible.

CS301 is a core course offered to a batch of 60 CS students
in Semester V and consists of 3 h of lectures and 3 h of lab
per week (Bloom levels for this course [37]: K/C/A). The course
covers parallel computing of both shared memory and distributed
memory nature, using OpenMP and MPI respectively. A module
driven approach [14] is taken for this course, dividing the course
into five important modules with each module consisting of about
7 lectures. These modules are focused on - (i) Modern Processors,
parallel computers and basic optimization techniques, (ii) Design
of Parallel Algorithms, (iii) Shared Memory parallel computing
with OpenMP, (iv) Performance Analysis and (V) Distributed mem-
ory parallel programming with MPIL.

The lectures in these modules and the corresponding lab as-
signments are designed and delivered in such a way that stu-
dents acquire the ability to “think in parallel” starting at the
hardware level, building up via parallel algorithms to various soft-
ware environments. The first half of the course covers concepts
and skills comprising the thinking in parallel mindset towards
problems that is required to implement an optimized parallel
algorithm/code. The second half of the course focuses more on
case-studies, assignments & team projects from different areas of
Computational Science and ICT. The fundamental idea is to teach
the basic theoretical principles of parallel computing by actively
writing codes/programs using well known case studies and exam-
ples as found in books [4,22,36,38-40,42] and material available
from the internet [24,33]. The systems perspective is achieved by
requiring rigorous performance analysis of these codes executed
on HPC machines.

The HPC course CS301 is offered at such a stage of the program
(after semester IV) when students have good understanding of
programming, algorithms, software development environments as
well as computer architecture, and are already skilled in UNIX shell
scripting, using remote shell access, secure file transfer, building
using Makefile, handling libraries etc., which makes it easy to
teach the technical aspects very quickly and introduce parallel-
programming/ code-optimization based lab assignments from the
second week itself. This allows the course to expose the students to
more case studies and lab assignments giving them more practical
experience of programming and analyzing performance in the
HPC/PDC paradigm.

In the lab, the students are provided with desktops each
equipped with Quad core high-end Intel processor and neces-
sary open-source software/libraries for parallel programming and
analysis. In addition to this, we have also installed a HPC cluster
facility at DA-IICT having 5 nodes each having 16 cores (total 80
CPU cores, 400 GB RAM) with an InfiniBand interconnect/ switch.
Students mainly use this facility for MPI-based implementations.
More details about the integration of PDC in ICT/CS curriculum
along with a schematic of the course design strategy can be found
in[10].

2.2. Evaluation

A continuous and comprehensive student evaluation strategy
consisting of exams, assignments, projects and oral presentations
provide very good feedback on how well the students have grasped
the PDC/ HPC concepts and also help in assessing the teaching
methodology. Compulsory projects drive student interest in re-
search related applications and motivate students for some of the

216 B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

Table 1

Selected questions from the two course evaluation surveys, weighted average of responses
(10-point scale), percentage of favorable responses (>6).

How familiar are you about High Performance Computing concepts? 198 2.1
(Survey-1)

How familiar are you about High Performance Computing concepts? 7.78 849
(Survey-2)

How much did you consider the impact of the architecture of the 483 417
computer on the performance of your programs? (Survey-1)

How much did you consider the impact of the architecture of the 836 887
computer on the performance of your programs? (Survey-2)

How much did you consider the impact of the memory hierarchy 4.8 41.8
related factors of the computer on the performance of your programs?

(Survey-1)

How much did you consider the impact of the memory hierarchy 826 86.8
related factors of the computer on the performance of your programs?

(Survey-2)

How good an idea do you have about the project topic that you are 365 167

going to do as part of your course project? (Survey-1)

How good an idea have you got about HPC from the course project that 8.07 88.8

you did? (Survey-2)

advanced topics. The evaluation is based on 2 mid-semester exams
(60%), and lab assignments & final project (40%). The heavy focus
on practical programming helps towards achieving the system’s
perspective and strengthens students’ design and implementation
skills.

2.3. Student projects

After 30 lecture sessions (10 weeks) and completion of 10
lab sessions (three-hour each), students are required to propose
a PDC focused one month project of their choice which they
implement in a team of two (teams must choose distinct top-
ics). A project comprises of understanding the algorithm, writing
serial and parallel implementations, followed by theoretical as
well practical performance analysis. A project report and a short
oral presentation of the work contributes towards the student’s
evaluation in the course. From Autumn 2017, we introduced a 2%
credit towards their final grade by asking relevant questions in
the presentations. This token incentive (2% towards final grade)
significantly improved the student participation, and class inter-
action during the project presentations. The students looked at the
results being presented critically, analyzing the presentation con-
tent (algorithm, pseudo-codes, data, plots) closely while putting
forward their questions. Working in teams builds teamwork and
these presentations (along with the Q & A session) help in peer
learning. From a course instructor’s point of view, project reports,
oral presentations and the quality of Q & A session give a fair
idea about the comprehension ability of the students and their
understanding of PDC concepts. Depending on the diversity and
breadth of the proposed projects, the students also get an oppor-
tunity to learn about different domains from their peers and get
some exposure to research. A sample of reports of the projects
successfully executed by the students of Autumn-2017 batch can
be found under the “Repository” section of the Let’s HPC platform
(www.letshpc.org).

2.4. Course evaluation by students

Course evaluation through student feedback is very important
in assessing the course outcome and determining to what ex-
tent the desired course objectives have been achieved. Student
responses to well thought-out course specific questions helps
in refining the curriculum, fine-tuning the focus of lectures and
assignments, improving the effectiveness of course delivery as
well as addressing student’s needs and difficulties. We conducted

two surveys in the CS301 course in the Autumn semester (July-
November) 2017: one at the beginning of the course (Survey-1,
during second week) and one at the end of the course (Survey-2,
14th (last) week). Around 50 students participated in the survey,
responding to a set of 15 questions, revolving around different
course aspects. An integer scale of 1 (negative/less/lower) to 10
(positive/high/greater) was used and we present some statistics
related to some of the relevant questions from both surveys in Ta-
ble 1; the second column is the weighted average of the responses
(10-point scale) and the third column contains the percentage of
responses that were at least 6, which we call the percentage of
favorable responses. The full response data can be found in Table 6
in Appendix A.

The change in the responses from unfavorable to favorable
clearly illustrate that the understanding of HPC concepts increased
due to the course. In particular, the questions about architecture
and memory hierarchy show that students realized the importance
of the system components towards the end of the course. These
course evaluation results provide justification for the design and
implementation of the course.

2.5. Success stories

The success that students have achieved in international con-
ferences provide further justification of the course design & im-
plementation strategy. The students of the CS301 course were
encouraged to do research work in the area of PDC/HPC and par-
ticipate in various conferences to present their work. Students
interested in research were able to perform commendably based
on exposure to just one course. It is very encouraging to report
about the following performances and achievements of the stu-
dents from DA-IICT in the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC17; http:
|/supercomputing.org/) and IEEE International Conference on High
Performance Computing, Data, and Analytics (HiPC 2017, 2016
and 2015; www.hipc.org). Most of the following students received
student travel grants to attend the conference to present their
work, giving them exposure in the area of HPC. Name of students
are mentioned in italics in the following list.

1. Research Poster titled “Parallelization of the Particle-In-Cell
Monte Carlo Collision Algorithm (PIC-MCC) for Plasma Sim-
ulation on Intel MIC Xeon Phi Architecture” authored by Ke-
val Shah, Anusha Phadnis, Miral Shah and Bhaskar Chaudhury
got accepted for publication in SC17 Conference, USA, 2017.
[Four reviews per submission, acceptance rate ~ 58% (98
accepted out of 169 submissions)]

http://www.letshpc.org
http://supercomputing.org/
http://supercomputing.org/
http://supercomputing.org/
http://www.hipc.org

B. Chaudhury et al. / J. Parallel Distrib. Comput. 118 (2018) 213-232 217

2. Paper titled “A Novel Implementation of 2D3V Particle-In-
Cell (PIC) Algorithm for Kepler GPU Architectures” authored
by Harshil Shah, Siddharth Kamaria, Riddhesh Markandeya,
Miral Shah and Bhaskar Chaudhury got accepted for publica-
tion in HiPC 2017 Proceedings, 24th HiPC, India, 2016. [Four
reviews per submission, acceptance rate ~ 22% (42 accepted
out of 184 submissions)]

3. Paper titled “Accelerated Fluid Simulation of Low Tempera-
ture Plasmas on Intel Xeon Phi MIC Architecture” authored
by Henil Shah, Anurag Gupta, Saumya Bhadani and Bhaskar
Chaudhury got accepted in HiPC Student Research Sympo-
sium, India, 2016. [Three reviews per submission, typical
acceptance rate ~ 60% (34 accepted out of 57 submissions)]

4. Yashwant Keswani and Akshar Varma secured second place in
Student Parallel Programming Challenge supported by Intel
and NVIDIA at 23rd HiPC, India, 2016.

5. Keval Shah, Abhi Shah and Parshwa Shah secured third place
in Student Parallel Programming Challenge supported by
Intel and NVIDIA at 23rd HiPC, India, 2016.

6. Shaleen Kumar Gupta, Sishtla Chaitanya Prasad, Visharad
Bansal secured third place in Student Parallel Programming
Challenge supported by Intel and NVIDIA at 22nd HiPC,
India, 2015.

7. Henil Shah, Anurag Gupta, Saumya Bhadani and Bhaskar
Chaudhury received the Best Poster Award (SRS) at the 23rd
HiPC, India, 2016.

8. Keval Shah got accepted into the SC17 Experiencing HPC for
Undergraduates Program and presented a research poster at
SC Conference, Denver, USA, 2017.

2.6. Experiences and student feedback

Student feedback via surveys (formal and informal), as well as
experience of the instructor and teaching assistants provided a
very illustrative subjective assessment of the teaching methodol-
ogy and students’ learning perspectives. Summary of the important
lessons learned are as follows:

1. Students need to learn and understand the importance of
system’s perspective in HPC.

2. Students face difficulties in co-relating all the deterministic
and non-deterministic factors which affect performance.

3. Students face difficulty in data collection for proper perfor-
mance analysis as well as in presentation of their results.

4. Requirement of Teaching Assistants (TAs) in the Lab who
have good technical background in HPC and can guide stu-
dents on the above mentioned aspects.

5. Allowing more time for project presentations and including
question/answer sessions involving students, TAs and the
instructor helps in peer learning.

6. Student get very limited opportunity for self-evaluation
while completing the assignments, as well as for peer learn-
ing post assignments.

7. A lot of time that is spent in preparing reports for assign-
ments and projects, does not actively contribute to students’
HPC/PDC knowledge.

8. Additional lab time for more practice via access to a com-
putational cluster during the weekdays and weekends pro-
vides more learning opportunities.

9. Students have access to only a limited variety of hardware
architectures where the parallel codes can be executed.

10. Instructor and TAs face difficulties in evaluation of assign-
ments and projects due to lack of uniformity.

The Let’s HPC project was motivated by the aim of addressing as
many of the above issues as possible. During the Autumn Semester
of 2016, offline scripts were made to address some of these issues
and used for the lab evaluation of the CS301-High Performance
Computing Course at DA-IICT. The offline scripts used for the lab
evaluation became the precursor of the tools provided by the Let’s
HPC platform, and the ongoing project is evolving to accommodate
more advanced and user-friendly analysis tools which provide a
better system’s viewpoint to users.

3. Design philosophy of the Let’s HPC Platform

The design of the Let’s HPC platform has been made on the basis
of two major guiding principles:

1. Build web-based tools that ease and streamline the process
of analyzing the performance of a parallel program from a
system’s perspective [46] and thereby help all stakeholders
in the HPC/Parallel Programming community to understand
the barriers to higher performance.

2. Keep the design modular to allow easy storage, access,
exchange and manipulation of data, and addition of more
analysis tools without disturbing the platform.

Keeping in mind a need for a benchmark-like database for
students to learn and for instructors to use to guide students, the
central part of our platform is an archival database that contains
all the necessary data from a given computational experiment to
study performance on the basis of the software (problem solving
approach, serial and parallel code) used and the execution envi-
ronment (machine, OS, compiler, parallel framework etc.) used in
the experiment.

Each of the tools interact with the database and use the data
to construct plots that can be used to analyze performance. The
tools have been designed in a way as to benefit instructors, stu-
dents, self-learners and independent researchers in the learning
and teaching of HPC. Used together these tools can make the study
of HPC as smooth as possible, allowing students and instructors to
focus on the important parts by removing mundane tasks such as
generating plots and compiling a report of analysis. This should
help in providing more time to the students to focus on improv-
ing their codes and their understanding rather than on tasks not
directly adding to their HPC/PDC knowledge.

The four major components of the Let’s HPC platform, schemat-
ically shown in Fig. 1, are as follows:

e The archival database contains software and hardware de-
tails of HPC experiments for various problems, approach,
machines combinations which will act as a benchmark for
the HPC community to study and teach from. Analogous
to the theory contained in textbooks, this will contain the
performance data (as detailed in Section 4.1) which can
be analyzed to throw light on the effect of various (non-
deterministic) factors that are difficult to quantify in theory.

e Analyze Benchmark Data (comparison tool) provides plot-
ting features [20] that allow users to analyze and compare
the data from various benchmark experiments that have
been contributed by members of the HPC community. This
is useful when users want to analyze, compare, or learn from
the performance that others have achieved using various
implementation approaches on various machines and pro-
gramming environments.

e Analyze custom data: A tool that allows anyone in the HPC
community to analyze their own data. This is useful when
users want to analyze results that they achieved using their
own implementation-machine-environment combination
using the plotting and analysis tools available on our plat-
form.

218 B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

N

HPC Community

N e e e e DD D e e e mm oo oTT o]

Let’s HPC' v

/ Comparison Tool :
Archival Report Generator

Database
\ Analyze Custom Data

A

CSottvare > Hardvare

HPC Concepts

Platform Tools

\

Fig. 1. Schematic of the conceptual design of the Let’s HPC platform illustrating
how the components interact with stakeholders of the HPC education community
(platform users) and with important HPC/parallel programming concepts.

e Areport generator mainly aimed at students which allows
them to upload their data and answer a basic list of well
thought-out questions based on the plots that are generated
automatically. This gives a uniform report that facilitates
evaluation of labs/projects by instructors. It is also useful as
a starting point for anyone who needs an HPC related report.

In the following subsections, we provide a brief review of the
tools of our platform from the perspective of three major stake-
holders (the instructor, the student, and the self-learner) in the
HPC community that we perceive will benefit the most from this
framework.

3.1. Course instructors

The primary mechanism for course instructors to use the Let’s
HPC platform is via the archival database containing data from
numerous problems and solutions approaches. These can be used
to supplement the theoretical knowledge that students receive
with analysis of performance of various approaches and machine
factors. These would provide students with example analysis that
they can easily grasp and replicate during their own work. The
platform also contains a comparison tool which allows users to
upload and compare their custom data with any of the existing
data available in the database. This provides an additional means
by which instructors can teach students; instructors can use this
to showcase how certain factors can affect performance using real
examples that would be difficult to showcase using theory and
textbook knowledge alone. Our tools’ focus on analysis ensures
that students quickly realize the importance of all the factors that
impact the overall performance. Section 5 contains an example of
how users could use the platform’s archival database (and similarly
the comparison tool) to study and analyze the performance of
problems in an HPC setting.

The use of these two tools are analogous to how in more
theoretical courses, textbooks can first be used to teach a concept
and later examples can be solved to show how those concepts are
used. Together these provide the means for instructors to provide

students with an overall understanding of concepts in a manner
similar to that available in more theoretical courses without losing
the focus on the practical side of HPC.

Apart from bridging the theory-practice divide, one of the ma-
jor difficulties faced by HPC course instructors is in the evaluation
of students. HPC courses need to focus on practical aspects, in a
manner which is different from a normal algorithm/programming
course. HPC lab assignments are not as straightforward as other
programming assignments; there is not necessarily any “single
correct answer”. From a pedagogical point of view, the focus is
on understanding the reason for the performance achieved rather
than on merely achieving optimal performance. An HPC course
needs to be lab/project oriented and in such cases instructors need
a method to evaluate the students. A simple and common solution
comes in the form of a report to be submitted by the students
containing their understanding and analysis of the results. Our
platform’s report generator (see Section 4.3) is an apt tool for
such cases. The systematic manner in which questions have been
divided into sections allows for the compilation of a proper, concise
report which helps instructors to do a uniform evaluation.

3.2. Students

Students need to realize the importance of acquiring a holis-
tic view of the system while learning parallel programming and
they need resources via which they can learn how system factors
beyond the code, such as the hardware and the programming
environment play a role in performance. Generally students have
access to only a couple of computing systems in the lab sessions of
HPC courses, and even those may have similar configurations. Sim-
ilarly, their lab assignments/projects may be restricted to merely
focusing on getting correct answers and on the implementation
approach due to a lack of resources as well as time. Our archival
database provides students with an opportunity to analyze the
performance of various HPC systems, from hardware differences
to the effect of the programming environment. The platform also
provides an opportunity for students to analyze and compare the
performance of their implementations to those of others; this
can happen at a course level or on a global level with students
first learning from their peers and then from others in the HPC
community. This will help students in easily learning more than
one approach to parallelize a problem and also motivate them in
improving the performance of their code.

From the point of view of students, making a polished report
requires a lot of effort starting from measuring execution times,
performing statistical pre-processing, generating plots, and finally
performing various kinds of analyses to understand why a given
performance is being achieved. Combined with the automated
data collection scripts (see Section 5.1) our platform’s “Report
Generator” tool automates much of this process for students. Apart
from automating mundane tasks and aiding in making reports, our
tool brings to notice many minor points of analysis that students
may miss out on. This ability to look at the whole system and being
consciously aware of the fact that each component can impact
performance can help in writing codes more attuned to the system.

3.3. Self-learners

Users who already have the required background to study
HPC/PDC and having access to decent computational resources will
find our framework quite useful to study HPC on their own. Our
platform supplements theoretical, book-based knowledge very
well and can act as a “textbook” to study non-deterministic factors.
The available tools aid self-learners to get rid of mundane tasks and
focus on understanding HPC from the whole system’s perspective.

Apart from these stakeholders, independent researchers can
also find use for the platform as a repository for benchmarked data,
to contribute their own data and as a forum for discussion with
other HPC educators/researchers.

B. Chaudhury et al. / J. Parallel Distrib. Comput. 118 (2018) 213-232 219

4. Overview of the website and tools

Let’s HPC has been developed using the standard MEAN stack
web framework [52]. The MEAN (MongoDB, Express]S, Angular,
Node) stack allows for modularity in the structure of the whole
platform from back-end to front-end. Each piece works inde-
pendently, with Node-MongoDB-Express forming the server side
framework to serve database requests and Angular forming the
client side scripting framework. Being a popular choice for many
developer communities, the open source technologies used in the
MEAN stack are continuously maintained and upgraded by their
respective communities. This also implies that regular upgrading
and addition of new features to the platform is fairly straightfor-
ward.

The plotting and analysis tools all use values present! in
the database depending on the user’s access permissions. Let’s
HPC’s archival database is conceptually structured into different
databases based on access permissions of users. The conceptual
division based on access permissions are:

e Public benchmark data accessible to everyone, even without
an account. These would contain data that has been curated
and made public by various contributors.

e Data of courses accessible to course instructors of registered
institutes. Each batch of students may have (conceptually)
different databases and the instructor would have access to
and control over all of this data, with the ability to make data
of a given assignment public as and when they want to.

e Databelonging to students registered in courses but not cor-
responding to course assignments, such as an extra projects
taken up by the student. Students can directly upload their
data and analyze it using the tools provided, even share it
with peers and learn via discussions.

e Private data of individual contributors, only accessible to
them. This will primarily be data pertaining to unpublished,
ongoing research; collaboration among contributors would
also be possible in this setting.

In Section 4.1, we provide details of the nature of the data that is
stored in the database and how it is useful for analysis. Section 4.2
illustrates how we set filters for accessing data from the database
and Section 4.3 discusses the report generator tool.

4.1. Nature of collected data

Inspired by the work presented in [6], we have arranged the
algorithms in our database in separate categories, and the prob-
lems in a particular category share good amount of similarity in
computation and data movement. However, unlike [6], we do not
intend to keep the number of categories fixed. Each problem is cat-
egorized into broad problem categories (examples in Table 2; cat-
egories and problems within any category can be added/removed).
Further, we store data about each machine’s hardware (proces-
sor version, number of cores, cache sizes, clock speed, etc.) and
the software/programming environment (OS, compiler, parallel
libraries, API etc.) that is used for executing a particular problem.
In addition to this, various theoretical details of the problem such
as an algorithmic description of implementation approach used,
the theoretical asymptotic computational complexity of serial and
parallel codes etc. are stored in the database. All of this meta
data provides the required background to start the analysis of a
problem.

For each machine-implementation approach-programming
environment combination, the serial and parallel versions of the

1 Currently, the user module is under beta testing within our institute and
therefore, only the public data has been made available.

Table 2
Illustrative set of categories and sample problems.
Category Problems
Vector Dot Product

Linear Algebra Matrix Multiplication

Array Sum
Reduction, Scan, Sort Scan
Quicksort

Grayscale conversion
Median filtering

Image Processing

Monte Carlo

Divide and Conquer Pi using Series Sum

code are run multiple times for a range of problem sizes and data
of execution times is collected. Two kinds of time data have been
collected which allow us to understand how costly 1/O operations
and other pre/post-processing is in any given problem.

e Algorithmic (ALG) time: This includes only the time for the
core algorithm (memory access and operations), and does
not include any time for the I/O part or other pre-processing.

e End-to-end (E2E) time: This counts the entire run-time of
the program. In addition to ALG time, this includes the time
taken for I/O (reading the input test-case files and writing
the output data files as well) as well as any other pre/post-
processing that is not a part of the core algorithm.

We run codes multiple times to allow later statistical pro-
cessing, which allows us to not only use the mean of the raw
data but also provides information about the variability® of the
results and thus the nature of non-deterministic factors affecting
the performance for that particular combination of machine and
implementation. Based on this data we can then proceed to plot
execution times (both ALG and E2E times), the relative speedup,’
the efficiency, and the Karp-Flatt metric [2]; and these plots can be
of statistics like the mean, median, standard deviation or range of
all the runs [48].

The hardware specifications and OS, compiler versions are also
collected. In our case, we used the following commands:

e cat /proc/cpuinfo (CPU)
e lscpu(CPU)

e uname -a (0S)

e gcc —-version (Compiler)

All of the available plots, hardware specifications and
OS/Compiler versions form the basis for preliminary and basic
analysis of any parallel code and reveal a lot about the machine, the
implementation approach, and the programming environment.

However this data is not fully sufficient to perform an analy-
sis from a whole system'’s perspective, there are numerous non-
deterministic factors regarding which we have no quantifiable
data. Collecting only the execution times of codes leaves out a
lot of information regarding many software-hardware interaction
related factors, making analysis based on those factors difficult.
We address this issue by also collecting data regarding various
software-hardware interaction related parameters which quantify
how they affect performance.

4.1.1. Collecting perf data

The Let’s HPC framework uses the perf utility.* to collect data
regarding software-hardware interaction related parameters us-
ing hardware counters, which is then presented to users similar to

2 Based on suggestions in [48].

3 The relative speedup S = Ts/T,, where T, is the time for parallel code and Ty is
the time for serial code using the same approach on the same machine.

4 https://perf.wiki.kernel.org/index.php/Main_Page.

https://perf.wiki.kernel.org/index.php/Main%5FPage

B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

Table 3

Software-hardware interaction related parameters calculated using perf.

Cycles

The number of cycles taken to execute a program.

Instructions

The number of instructions executed in a program.

Bus cycles

A count of the bus cycles occurring during the execution of a program.

Branches

The number of branches in the execution of a program.

Branch misses

The number of branch misses in the execution of a program.

Context switches

The number of context switches in the execution of a program.

CPU migrations

The number of CPU migrations in the execution of a program.

Page faults

The number of page faults in the execution of a program.

Cache references

A count of the cache-references occurring during the execution of a
program.

Cache misses

Account of the cache-misses occurring during the execution of a
program.

L1 data cache loads

A count of the L1 data cache loads occurring during the execution of a
program.

L1 data cache load misses

A count of the L1 data cache load misses occurring during the
execution of a program.

L1 data cache stores

A count of the L1 data cache stores occurring during the execution of a
program.

LLC loads

A count of the Last Level Cache loads occurring during the execution of
a program.

LLC load misses

A count of the Last Level Cache load misses occurring during the
execution of a program.

LLC stores

A count of the Last Level Cache stores occurring during the execution
of a program.

LLC Prefetches

A count of the Last Level Cache Prefetches occurring during the
execution of a program.

dTLB loads

A count of the data translation lookaside buffer loads occurring during
the execution of a program.

dTLB load misses

A count of the data translation lookaside buffer load misses occurring
during the execution of a program.

dTLB prefetch misses

A count of the data translation lookaside buffer prefetch misses
occurring during the execution of a program.

how the execution times (and derived metrics) are presented. This
allow the users to analyze problems based on these parameters
and this combined data (execution times and software-hardware
interaction parameters) improves the analysis, making it more
comprehensive by enabling users to back up their analysis with
data related to the whole system especially how the code imple-
mentation interacts with the hardware resources available. The
particular parameters calculated by perf are listed out in Table 3.

The parameters that perf calculates all directly affect the ex-
ecution time of a program and hence the performance of parallel
implementations. An approach may outperform another approach
because, say one of them has less number of cache-misses. Having
this data allows users to identify hardware resource use related
issues in their implementation and improve it. When machines are
being compared, these parameters can be easily used to identify
the difference in the performance due to the hardware and thereby
highlight the importance of considering the architecture while
writing HPC programs.

As discussed earlier, any HPC system/model consists of 3 impor-
tant blocks, namely the system hardware, the algorithm (specific
implementation) and the programming environment. The perf
data we have collected combines very well with the time related
data to provide a holistic picture of any such HPC system and allow
users to perform analysis from the whole system'’s perspective as
we illustrate in Section 5.

Each of these blocks and their component parts have to be
analyzed by segregating relevant components which affect the
performance, and studying each of them as well as the correlation
among them. We now discuss how this segregation has been
naturally designed into our platform.

4.2. Data filtering process

Our platform’s plotting and analysis tools get data for compari-
son from the database using a flexible filtering process that can be
expanded with additional features and provides opportunities to
compare a wide variety of factors that make up the HPC system.
Fig. 2 contains a conceptual schematic that describes the flow of
the tool when users filter data according to their requirements. A
screenshot of how that is implemented on the platform is available
in Fig. 3.

The user first selects a category of problems and a problem
belonging to that category. Along with this, shared, distributed
or heterogeneous architecture is selected. For the case study in
Section 5, we would select “Linear Algebra” and “Matrix Multipli-
cation” along with “Shared memory system”.

The website then fetches data from the database and provides
three options (compare either approaches, or machines or pro-
gramming environments) for the primary basis of comparison.
The user makes a choice here; in the example in Section 5 we
illustrate using both “Approaches” and “Machines”. Whichever
basis is chosen, multiple instances can be chosen that the user
wants to compare (for comparing “Approaches”, users can select
from many matrix multiplication approaches). The platform then
provides a list of the remaining options in each of the remaining
bases (users choose one each from available machines and pro-
gramming environments for which the database has data for the
selected approaches). The user selects one instance from each and
data is fetched for all the problem sizes. The user can then proceed
to adjust the plot settings according to their preference and study
the plots. Users can also download the plots and include them in
the report generator.

B. Chaudhury et al. / J. Parallel Distrib. Comput. 118 (2018) 213-232 221

s N

Choose a category Data Filtering Schematic
Shared or Distributed
Choose a problem

Get available options

Platform fetches
from database

Choose primary basis
of comparison

Approach Machlne Envn"onment]

Choose multiple instances
from chosen basis

[Remamlng basis 1 Remammg basis 2}

Choose one instance from
both remaining bases
one-by-one

Only remaining basis

Data is fetched for
Fetch data all problem sizes

Number of Processors

Adjust plot settings
according to need

Linear/Log scales
Mean/Median/Range/Standard Deviation
Execution Time/Speedup/Efficiency/Karp-Flatt/perf data
J

\ J

Fig. 2. Schematic explaining how the data filtering process works in the Let’s HPC
platform.

One salient aspect of our platform is the customizability of the
options and settings of our tools. The plots that we provide can
contain the mean, median, standard deviation and range of the
data. The scales of the axes can be changed as needed between
logarithmic and linear. And these customizations can be done for
any of the metrics that are available, be it time, speedup, or any

Let's HPC Home

parameter calculated by perf. Further, depending on the metric
(or otherwise) the minimum and maximum values on the axes can
be set according to preference to zoom the plot to a desired portion.
Thus, our platform allows ample customization options for the user
to be chosen and used as required.

4.3. Report generator

As we have already discussed in Section 3.2, students need a
mechanism to quickly and efficiently make reports based on their
analysis that instructors can evaluate uniformly and easily. The
report generator part of our platform has questions designed to
significantly ease this process for students. Table 4 contains the
broad idea of the division of questions in the report generator into
various sections and a short description of the kind of questions.
It allows students to upload their results, get plots automatically
generated and a set of questions which students answer on the
basis of their analysis. They get a . tex file along with the required
plots that they can then modify as required and compile to get a
PDF report. It forms the last step in the chain of any HPC analysis,
and our platform automates all aspects starting with compiling and
running of the codes and collecting performance data automat-
ically to uploading execution results and finally getting a report
containing the analysis.

5. How to use Let’s HPC tools and case studies

In this section we discuss how the platform can be used and
illustrate how various stakeholders are benefited from the use of
the Let’s HPC platform. We go through the normal workflow that
someone working on an HPC/PDC problem would follow while
using this platform. We have taken the matrix multiplication
problem from Linear Algebra category for this illustration. The
usage of the platform tools begin once the user has written the
serial and parallel codes and ends in the analyses of various aspects
that affect performance.

Analysis Tools ~ Report Generator Tool Repository ~ About -

Fig. 3.

For details on how to operate the tool, please refer to the schematic and user manual

Category ~ | Linear Algebra Problem~ = Matrix Multiplication

® Shared Memory Distributed Memory Heterogeneous Architecture

Compare Machines

Machines

Compare Approaches Compare Programming Environments

2 selected ~

Approach v Environment+ = OpenMP + gcc Set Data

Recursive Block Matrix Multiplication
Middle Loop parallelization
Transpose based approach

Dragin a rectangular area to zoom.Right click in chart to reset
Use the buttons below to customize the scale and limits of the axes.
Hover o click on points to extract exact data points.

Hover or click on labels to select all data points on the curve.

Customize graph Export Graph
Metric Selector Statistic~ | Mean

A screenshot of how the data filtering process is implemented on the Let’s HPC platform.

222

Table 4
Sample questions for the Report Generator.

B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

Section

Question description

Basic description
approaches used.

Basic questions asking for description of the Serial and Parallel

Complexity, analysis

Questions regarding complexity of the implementations, memory

accesses, computations, theoretical speedup, etc.

Curve based analysis
plots.

Analysis of Execution time, Speedup, Efficiency and Karp-Flatt metric

Further detailed analysis

Detailed analysis on the basis of concepts like cache coherence, false

sharing, granularity, load balancing, etc.

Additional analysis

Analysis of various miscellaneous factors that impact performance;

advantages/disadvantages and difficulties with respect to the

implementation.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication,
APR2: Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

(=]

Execution time (s)
S

) —e— ALG; APRI@MCN1, 4
threads

—e— ALG; APR1I@MCN1, 0
threads
ALG; APR2@MCN1, 0
threads

—eo— ALG; APR2@MCN1, 4
threads

1E2 2E2 3E2 4E2 5E2

6E2

Problem size

7TE2 8E2 9E2 1E3

Fig. 4. Execution time (ALG: Algorithmic time in seconds) plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix

multiplication.

5.1. Scripts for data collection

Once the codes have been written, Python scripts are used to
automatically run the codes multiple times® to minimize anoma-
lies which might arise due to the non-deterministic hardware
dependencies (other processes, OS scheduling, etc.). Performance
related data including execution times as well as hardware related
parameters are gathered during each run and all this data is stored.
These open sourced scripts (as well as sample OpemMP parallel
codes) can be downloaded from the Github repository [29] and
anyone can easily use them to automatically compile the codes,
run them multiple times and collect data during each run.

The automated scripts ensure that data is collected in a format
which can easily be uploaded onto the platform to create the
required plots and to analyze them using the tools provided. The
execution time data that is collected for each run of the code is
used to plot the execution time, speedup, efficiency and the Karp-
Flatt metric. Further, the scripts use the perf utility to collect
various parameters detailed in Section 4.1.1. All of this data is then
plotted as various aggregate statistical measures as discussed in
Section 4.1.

5.2. Performance analysis using platform tools

In this section we show how once the data has been collected
using these scripts and uploaded to the database, our plotting and
analysis tools can be used to compare the performance given by
an HPC system using some standard laws, ground rules and guide-
lines for interpretation of results [2,19,48]. There are numerous
approaches possible for Matrix multiplication; we illustrate the

5 The script allows configuring the number of times the codes are run.

usage of the tools of the Let’s HPC platform by comparing two such
approaches. Later we compare the performance of one of those
approaches on two different machines.

Note: We have chosen the problem, matrix sizes, number of
threads, number of figures to use in the analysis all with the aim of
best illustrating the usefulness of the platform as a pedagogical tool
from a system’s perspective. We choose to use modest problem sizes
and number of threads and instead use more figures to bring focus to
the breadth of data that can be analyzed using the Let’s HPC platform.
The analysis we present is generic enough to be easily extended to
more complex problems, performing deeper analysis as required. At
the same time it is something that instructors can readily explain
to students, enabling them to appreciate the need for proper data
collection, plotting and analysis for understanding performance.

5.3. Comparing approaches

We compare recursive block multiplication approach (Ap-
proach 1) and parallelization of the middle loop using ‘#pragma
omp parallel for’ approach (Approach 2). We plot the curves
for the parallel version for 4 threads and the serial version and then
analyze those curves to understand the performance of the two
approaches. We have considered square matrices (no. of rows=no.
of columns), and the problem size in this case is represented by
the number of rows (or columns). We analyze results (Figs. 4-14)
of runs on an Intel® Core™ i7-6500U at 2.50 GHz.

5.3.1. Analysis based on the execution time graph

Based on Fig. 4, we can clearly see that Approach 2 is better than
Approach 1 in terms of execution time for parallel case (4 threads).
The number of recursive calls in the recursive block method is a
function of the problem size, so as the problem size increases, more

http://www.letshpc.org

B. Chaudhury et al. / J. Parallel Distrib. Comput. 118 (2018) 213-232 223

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: R:

Block Matrix

APR2: Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

25

o
[$))

Mean of Speedup

0.5

—e— ALG; APR1@MCN1, 4
threads

—e— ALG; APR2@MCN1, 4
threads

1E2

Problem size

1E3

Fig. 5. Speedup plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication. ALG: Algorithmic time has been used

to calculate the results.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, APR2:
Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

0.8

0.6

0.4

Standard Deviation of Speedup

0.2

—eo— ALG; APR1@MCN1, 4
threads

—eo— ALG; APR2@MCN1, 4
threads

1E2

Problem size

Fig. 6. Speedup plot (Standard Deviation) generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication. ALG: Algorithmic

time has been used to calculate the results.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication,
APR2: Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

1,400,000,000
1,200,000,000
1,000,000,000
800,000,000
600,000,000

400,000,000

Mean of L1 Dcache Load Misses

200,000,000

] —e— L1DCACHELOADMISSES:
APR1@MCN1, 4 threads

—~o— LIDCACHELOADMISSES;
APR1@MCN1, 0 threads
L1DCACHELOADMISSES;
APR2@MCN1, 0 threads

~e— L1DCACHELOADMISSES;
APR2@MCN1, 4 threads

1E2

1E3

Problem size

Fig. 7. L1d Cache Load Misses plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication.

number of recursive calls are made, and hence the time is much
more than that for middle loop parallelization approach. However,
for serial case (O thread), Approach 2 is better than Approach 1
till problem size 512, but for problem size 1024 Approach 1 is
better. This can be explained by looking at the machine details.
For problem size 512, total storage required for storing A, B and C
matrix is around 3MB which is less than 4MB L3 Cache. Therefore,
even in the case of Approach 2 the whole arrays fit into the Cache
memory and there is no obvious gain from block implementation.
However, for problem size 1024, total storage required for storing

A, B and C matrix is around 12MB which is more than 4MB L3
Cache and the whole arrays does not fit into the Cache memory. In
this case (serial run for problem size 1024 and higher), Approach
1 (block matrix) aimed at utilizing the Cache memory does much
better compared to Approach 2.

5.3.2. Analysis based on the (relative) speedup graph

The first thing we notice is that relative speedup (Fig. 5) only
occurs for problem size n >= 64 (multiplication of two 64x%
64 matrices) for both the approaches. This is because for smaller

http://www.letshpc.org
http://www.letshpc.org
http://www.letshpc.org

224 B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, APR2:
Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

7,000
6,000
5,000
4,000

3,000

Mean of Page Faufts

2,000

1,000

—e— PAGEFAULTS;
APR1@MCN1, 4
threads

—e— PAGEFAULTS;
APR1@MCN1, 0
threads
PAGEFAULTS;
APR2@MCN1, 0
threads

—e— PAGEFAULTS;
APR2@MCNT1, 4
threads

1E2

1E3

Problem size

Fig. 8. Page Faults plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, APR2:
Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

100,000,000

80,000,000

60,000,000

40,000,000

Mean of Branch Misses

20,000,000

—e— BRANCHMISSES;
APR1@MCN1, 4
threads

—e— BRANCHMISSES:
APR1@MCN1, 0
threads
BRANCHMISSES;
APR2@MCN1, 0
threads

—e— BRANCHMISSES;
APR2@MCN1, 4
threads

1E2

1E3

Problem size

Fig. 9. Branch Misses plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, APR2:
Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

3,500
3,000
2,500
2,000
1,500

1,000

Mean of Context Switches

500

~e— CONTEXTSWITCHES;
APR1@MCNT1, 4
threads

—e— CONTEXTSWITCHES;
APR1@MCN1, 0
threads
CONTEXTSWITCHES;
APR2@MCN1, 0
threads

~e— CONTEXTSWITCHES;
APR2@MCNT1, 4
threads

1E2

Problem size

1E3

Fig. 10. Context Switches plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication.

problem sizes, the parallelization overhead in terms of initializa-
tion of threads and scheduling is significant in comparison to the
parallelization achieved. The fact that the speedup data might be
unreliable for smaller problem sizes can also be seen by looking at
the Standard Deviation instead of the Mean for this, as in Fig. 6.
For larger problem sizes, the computational part of the code is
significantly higher than the overhead and we get reliable data and
also notice a speedup.

In the recursive block approach, we see that the speedup tends
to saturate at around 1.25. Knowing that the recursive block ap-
proach has been implemented using recursive calls suggests that
the increasing number of recursive calls may be causing this satu-
ration of speedup but this is unlikely to be the major cause since the
speedup is relative to the same serial approach. While conventional
analysis may resort to blaming scheduling overheads or memory
access overheads as potential causes for this, we can use the perf

http://www.letshpc.org
http://www.letshpc.org
http://www.letshpc.org

B. Chaudhury et al. / J. Parallel Distrib. Comput. 118 (2018) 213-232 225

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: R:

Block Matrix

APR2: Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

Mean of Efficiency

o
3]

—e— ALG; APR1@MCN1, 4
threads

—e— ALG; APR1I@MCN1, 2
threads
ALG: APR2@MCN1, 2
threads

—e— ALG; APR2@MCN1, 4
threads

1E2

Problem size

1E3

Fig. 11. Efficiency plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication. ALG: Algorithmic time has been

used to calculate the results.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, APR2:

Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

Mean of Karp Flatt

—e— ALG; APR1@MCN1, 4
threads

—e— ALG; APR2@MCN1, 4
threads

1E2

Problem size

1E3

Fig. 12. Karp-Flatt metric plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication. ALG: Algorithmic time has

been used to calculate the results.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, APR2:
Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

60,000,000,000

50,000,000,000

40,000,000,000

30,000,000,000

20,000,000,000

Mean of DT L B Loads

10,000,000,000

—e— DTLBLOADS;
APR1@MCNT1, 4
threads

~e~ DTLBLOADS;
APR1@MCN1, 0
threads
DTLBLOADS;
APR2@MCN1, 0
threads

—e— DTLBLOADS;
APR2@MCNT1, 4
threads

1E2

1E3

Problem size

Fig. 13. dTLB loads plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication.

data to study this in more detail. Looking at the data we see that
cache misses (Fig. 7) and page faults (Fig. 8) are reduced by the
block matrix method compared to the middle loop approach. This
is expected as the block multiplication method is used with the
aim of improving memory accesses. However, we also see that
branch misses (Fig. 9) and context switches (Fig. 10) are much more
prevalent in the block multiplication method. This illustrates how
having actual data allows us to better understand the causes for
lack of performance without guessing.

In comparison, the steady slope of the speedup curve for the
middle loop parallelization approach show that it is a better ap-
proach in terms of scalability as the problem size increases. This
is to be expected since this approach does not have the overhead
of the high number of recursive calls that the block method has.
Additionally, a predictable pattern of memory access reduces the
number of branch misses which also helps in making approach
2 more scalable. We can say that this approach provides better
results in terms of speedup, but that should not be the final answer

http://www.letshpc.org
http://www.letshpc.org
http://www.letshpc.org

226 B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, APR2:
Middle Loop parallelization, MCN1: i7-6500U CPU @ 2.50GHz,

1,000,000,000

800,000,000

600,000,000

400,000,000

Mean of D T L B Load Misses

200,000,000

~o— DTLBLOADMISSES;
APR1@MCN1, 4
threads

—e— DTLBLOADMISSES;
APR1@MCN1, 0
threads
DTLBLOADMISSES;
APR2@MCN1, 0
threads

—e— DTLBLOADMISSES;
APR2@MCN1, 4
threads

1E2

1E3

Problem size

Fig. 14. dTLB load misses plot generated using the Let’s HPC tool (www.letshpc.org) for comparing the two approaches of matrix multiplication.

and we continue our analysis to further understand the reasons for
the achieved performance.

5.3.3. Analysis based on efficiency

Looking at a cross section (x = c line) of the efficiency plot
(Fig. 11) with multiple threads plotted, we note that the efficiency
decreases as number of threads increases. This suggests that nei-
ther approach is scalable. However, we can still compare between
the two approaches and say that the middle loop approach is more
scalable than the block method as the decrease in efficiency in
the former is not as sharp as that in the latter approach. Further,
looking at the trend of the efficiency of 4 threads in the middle
loop approach, we can see that there is a slight increase visible as
the problem sizes increase. This suggests that the method may be
scalable in terms of the problem size.

A similar analysis for the recursive block based approach shows
that the efficiency for 2 threads is more than that for 4 threads,
which indicates that the problem does not scale as we increase the
number of processors. This is similar to the lack of scalability with
respect to problem size.

5.3.4. Analysis based on Karp-Flatt metric

We use the graphs of the Karp-Flatt metric (Fig. 12) to cor-
roborate the analysis we performed using the other plots. These
plots represent the experimentally determined serial fraction of
the code. For the recursive block approach, we see that the serial
fraction starts to saturate towards the higher problem sizes, while
for the middle loop approach the serial fraction continues to de-
crease. This provides further evidence for our earlier analysis.

5.3.5. Other analysis

Looking at other data, we can find further evidence for the
efficiency of using block method, but of the inefficiency introduced
due to implementing it using recursion. The perf data contains
the data translation lookaside buffer (dTLB) loads and the data
translation lookaside buffer (dTLB) load misses (Figs. 13 and 14).
A Translation lookaside buffer (TLB) is a memory cache that is used
to reduce the time taken to access a user memory location [5]. As
defined a dTLB acts like a memory cache, so in the event of a dTLB
load miss, it takes the system an increased number of cycles to
fetch the data required. Therefore, a large number of dTLB misses
affects the performance adversely. The percentage of load misses
in the block method are only 0.0028% while that for the middle
loop is 4.5%. However looking at the number of loads, we see that
it is much higher for the recursive block approach compared to the
middle loop approach which shows that the recursive implemen-
tation harms the performance significantly.

Overall, using all these plots, one can analyze the two ap-
proaches for solving the matrix multiplication problem and con-
clude that the middle loop parallelization approach is better and
more scalable than the recursive block matrix approach. Both the
approaches suffer from parallelization overheads, but the middle
loop approach is comparatively better from a parallelism point of
view.

5.4. Comparing machines

We present a similar analysis while comparing machines but
here we focus only on the machine specific aspects that our analy-
sis tool helps in isolating. We compare an Intel® Core™ i7-6500U
at 2.50 GHz (Machine 1) with an Intel® Core™ Intel® Core™
i5-4200M at 2.50 GHz (Machine 2), both having been used to run
the recursive block matrix multiplication approach. The analysis
is done using the plots for the parameters (Figs. 15-21), primarily
those that the perf utility calculates.

The reason for looking primarily at perf calculated data be-
comes clear when we look at the execution time (Fig. 15). The only
conclusion we can get out of this plot is that Machine 1 seems to
function better, which is to be expected as it is a newer processor
(by 2 generations) and would have improvements over the older
processor. As speedup, efficiency and the Karp-Flatt metrics are
all derived from the execution time, even those would not be
significantly helpful in further analysis. This prompts us to look at
the perf data.

If we look at the LLC load misses graph (Fig. 16), we see that
the misses incurred by Machine 1 is significantly lower than those
incurred by Machine 2. Looking at the specifications of these ma-
chines, we can see that the L3 cache size for Machine 1 is much
higher at 4096 KB while that for Machine 2 it is only 3072 KB.
This extra 1 MB of cache explains the plot and provides a concrete
reason to confirm the earlier hypothesis that Machine 1 is a better
processor than Machine 2.

The LLC stores graph (Fig. 17) is also quite interesting, which
shows that the stores that Machine 2 does is lower than the stores
that Machine 1 does. This provides further evidence for our earlier
assertion that the extra 1 MB of cache is helping Machine 1 be bet-
ter than Machine 2. More stores implies that 1 MB is actually being
used and hence it is improving performance. One can also look at
this from the implementation perspective. We have three matrices
of floats of size 1024 x 1024 (8MB), and hence require 24MB for
all the data that is used during the whole matrix multiplication.
Since we have 1 MB of extra cache space in Machine 1, it provides
enough space for 4% more data than Machine 2 does. Looking at the
plots for L1d cache stores and loads (Figs. 19 and 18), we can see

http://www.letshpc.org

B. Chaudhury et al. / J. Parallel Distrib. Comput. 118 (2018) 213-232 227

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, MCN1:

i5-4200M CPU @ 2.50GHz, MCN2: i7-6500U CPU @ 2.50GHz,

Execution time (s)
N w B [$,] [=>] ~ [e<} ©

-

—e— ALG; APR1@MCN1, 0
threads

—e— ALG; APR1@MCN1, 4
threads
ALG; APRI@MCN2, 4
threads

—e— ALG; APR1@MCN2, 0
threads

1E2

Problem size

Fig. 15. Execution time (in seconds) plot generated using the Let’s HPC tool when comparing the two machines. ALG: Algorithmic time has been used to calculate the results.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, MCN1:
i5-4200M CPU @ 2.50GHz, MCN2: i7-6500U CPU @ 2.50GHz,

2,500,000

2,000,000

1,500,000

1,000,000

Mean of L L C Load Misses

500,000

—o— LLCLOADMISSES;
APR1@MCN1, 0
threads

—e— LLCLOADMISSES;
APR1@MCNT1, 4
threads
LLCLOADMISSES;
APR1@MCN2, 4
threads

—o— LLCLOADMISSES;
APR1@MCN2, 0
threads

1E2

1E3

Problem size

Fig. 16. Last level cache loads plot generated using the Let’s HPC tool when comparing the two machines.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, MCN1:
i5-4200M CPU @ 2.50GHz, MCN2: i7-6500U CPU @ 2.50GHz,

1,800,000
1,600,000
1,400,000
1,200,000
1,000,000
800,000
600,000
400,000
200,000

Mean of L L C Stores

~e— LLCSTORES;
APR1@MCN1, 0
threads

~e— LLCSTORES;
APR1@MCN1, 4
threads
LLCSTORES:
APR1@MCN2, 4
threads

~e— LLCSTORES;
APR1@MCN2, 0
threads

1E2

1E3

Problem size

Fig. 17. Last level Cache Stores plot generated using the Let’s HPC tool when comparing the two machines.

that both the processors have almost equal numbers. Since the L1d
cache sizes are the same, this supports our earlier reasoning.

Our overall analysis that Machine 1 is better than Machine 2 is
also supported by the plots for CPU Migrations (Fig. 20) and Context
Switches (Fig. 21). Both show that Machine 1 needs many more
CPU migrations and context switches both of which hurt perfor-
mance. Apart from this, even going through the specifications of
the two processors reveals more reasons why Machine 1 would
be better than Machine 2. For example, the Maximum Memory
Bandwidth of Machine 1 is 34.1 GB/s while that of Machine 2 is
25.6 GB/s; and considering that matrix multiplication is a memory

intensive problem, this difference in speed also plays a role in the
overall performance of the system.

Both our case studies illustrate how having data related to
the whole system allows users to analyze performance from a
holistic system perspective. The analysis presented show how it
is important to have data about other interacting components of
the system to analyze any particular component. The analysis we
present for simple case-studies can be readily extended to more
complex problems and systems. The tools provided by the Let’s
HPC platform are all designed to allow such analysis, combining
analyses based on execution time, speedup, etc. with that of system

228 B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, MCN1:
i5-4200M CPU @ 2.50GHz, MCN2: i7-6500U CPU @ 2.50GHz,

60,000,000,000 —e— L1DCACHELOADS;
APR1@MCN1, 0
threads
50,000,000,000 —e— L1DCACHELOADS;
g) g i APR1@MCN1, 4
g threads
L1DCACHELOADS;
E 40,000,000,000 APRI@MCN2, 4
S threads
8 —e— LIDCACHELOADS;
Q 30,000,000,000 APR1@MCN2, 0
X threads
~
S
© 20,000,000,000
3
2
10,000,000,000
1E2 1E3
Problem size
Fig. 18. L1d Cache Loads plot generated using the Let’s HPC tool when comparing the two machines.
ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, MCN1:
i5-4200M CPU @ 2.50GHz, MCN2: i7-6500U CPU @ 2.50GHz,
25,000,000,000 —e— LIDCACHESTORES;
APRI@MCN1, 0
threads
—e— L1DCACHESTORES;
3 20,000,000,000 APRI@MCN1, 4
S threads
a-) L1DCACHESTORES;
() APR1@MCN2, 4
S 15,000,000,000 threads
8 ~e— LIDCACHESTORES;
Q APR1@MCN2, 0
-~ threads
~10,000,000,000
Y
S
=
3
S 5,000,000,000
1E

1E2

3

Problem size

Fig. 19. L1d Cache Stores plot generated using the Let’s HPC tool when comparing the two machines.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, MCN1:
i5-4200M CPU @ 2.50GHz, MCN2: i7-6500U CPU @ 2.50GHz,

160
140
120
100

80

60

Mean of Cpu Migrations

40
20

~e— CPUMIGRATIONS;
APR1@MCN1, 0
threads

~e— CPUMIGRATIONS;
APR1@MCN1, 4
threads
CPUMIGRATIONS;
APR1@MCN2, 4
threads

~e— CPUMIGRATIONS;
APR1@MCN2, 0
threads

1E2

Problem size

1E3

Fig. 20. CPU Migrations plot generated using the Let’s HPC tool when comparing the two machines.

specific factors and helps in significantly improving the overall
analyses.

6. Platform evaluation and improvement

At the end of the Autumn semester 2017, a comprehensive
survey was used to gather feedback from the 53 students who used
the platform throughout the CS301 course for their assignments
and projects. The survey asked students to respond on a 5-point
integer scale with 1 representing negative/less and 5 representing
positive/more and we use the results to measure the effectiveness

of the platform. Table 5 contains statistics of the survey (refer to
Table 7 for the raw data); the second column contains the weighted
average of responses (5-point scale) and the third column contains
the percentage of responses that were at least 4, which we call the
percentage of favorable responses.

The majority of the responses were favorable, suggesting that
the platform was indeed useful in helping students learn HPC
better. Some of the questions received overwhelmingly favorable
responses and they are worth noting to understand the strengths
of the platform. In particular, the platform eased the process of
conducting HPC experiments and analysis and the report generator

B. Chaudhury et al. / J. Parallel Distrib. Comput. 118 (2018) 213-232 229

Table 5

Questions asked at the end of the course, weighted average of responses (5-point scale),

percentage of favorable responses (>4).

Tools, features and information are clear and easily understandable. 4.0 774
Learning to use the platform is easy. 362 585
24 x 7 access to the platform and its tools helps in learning. 4.1 774
Using the platform significantly eased the task of performing 424 86.8

experiments and analysis.

The platform’s automation of mundane tasks helped you to focus more ~ 3.96 71.7

on learning HPC concepts better.

The questions in the report generator brought focus to HPC concepts 411 792
and aspects of the assignments that may have been missed otherwise.

The platform helps in “thinking-in-parallel” and analyzing 362 585
performance keeping in mind the whole systems perspective
(architecture, algorithm and programming environment).

Overall, the tool enhanced understanding about HPC concepts and the 379 679

importance of having a systems perspective.

The platform was useful for the HPC course project. 372 66.0

You will use the platform for any future HPC related projects 381 64.1

The Let’s HPC platform is relevant to the CS301 course structure and its ~ 4.23 86.8
use was helpful in comprehension of the content.

ALG: Algorithmic Time, E2E: End-to-end Time, APR1: Recursive Block Matrix Multiplication, MCN1:
i5-4200M CPU @ 2.50GHz, MCN2: i7-6500U CPU @ 2.50GHz,

4,500 —e— CONTEXTSWITCHES;
APR1@MCNT, 0
4,000 threads
—e— CONTEXTSWITCHES;
3 3,500 APR1@MCN1, 4
ﬁ threads
= CONTEXTSWITCHES;
s 3,000 APR1@MCN2, 4
« threads
X 2,500 —e— CONTEXTSWITCHES:
= APR1@MCN2, 0
o 2.000 threads
8 2
s
=~ 1500
3
s 1,000
500
——
1E2 1E3

Problem size

Fig. 21. Context Switches plot generated using the Let’s HPC tool when comparing the two machines.

How useful was the platform for each of these broad "Subtasks" in an HPC experiment

35

30

25

2

Responses
o

B Very useful
15 i ‘
10 ‘
5
0 | =i I ’_I_I

Data Collecting Plotting of metrics

Analysis of Performance Understanding impact of architecture/machine

mm Useless

Emm Mostly useless
Some use
Useful

Report Generation

Fig. 22. Summary of the usefulness of the features of the Let’s HPC framework from the survey. The y-axis is the number of absolute responses, 53 people responded in all.

brought focus to aspects of analysis that may otherwise have been
missed. These along with the favorable responses to questions
regarding gaining a system'’s perspective show that the platform
definitely helps students to get a more holistic understanding
of HPC/PDC concepts. Further, students found that the platform
was relevant to the CS301 course structure and it was helpful in
the comprehension of the content of the course. That observation
combined with the course evaluations of the course (Section 2.4)
and success of students who have taken the course (Section 2.5)
provide ample evidence of the success of the platform in providing
students a holistic system'’s perspective of HPC/PDC concepts.

To get a better understanding of which part of an HPC exper-
iment was most facilitated by using the Let’s HPC platform, we
asked students to rate the platform tools in terms of the usefulness
of the tools available on the platform for each “subtask” involved
in an HPC experiment (on a range from “Useless” to “Very Useful”).
Fig. 22 shows a bar chart of responses to this question, and it
clearly shows that the tools provided by the Let’s HPC platform are
useful for all aspects of an HPC experiment. The platform was espe-
cially useful for data collecting, plotting of metrics, and analysis of
performance; thus streamlining the process of conducting an HPC
experiment for students.

230 B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

Sessions Users Pageviews

1,162 274 5,459
e M A
Pages / Session Avg. Session Duration Bounce Rate
4.70 00:07:20 6.20%
MAMAWAMWA 1V PUSFPVY S VRN PN MJ!'- A

% New Sessions

22.55%
VUM A A

v T

M Returning Visitor B New Visitor

A A

Fig. 23. Summary of the site usage patterns (collected using Google Analytics) for the Let’s HPC tool in the period August 2017-December 2017 (roughly the duration of the

CS301 course).

To get direct feedback from the students regarding aspects
of the platform that could be improved, we looked at some of
the written, long-form feedback provided in the “additional com-
ments” question of the survey. A very frequent feedback provided
by the students was that the report generator lacked customizabil-
ity and this hindered the flow in writing up their analysis in re-
ports. This explains why students believe that the report generator
helped them realize aspects that they may have missed otherwise
(Table 5) while at the same time finding the report generator only
moderately useful (Fig. 22). Realizing the difficulties faced by the
students, we are working on customizing the report generator.
Another aspect mentioned multiple times in the written feedback
was an initial difficulty in learning how to use the platform, and
getting used to the various tools. To address this, we are creating
a tutorial page for using the Let’s HPC platform wherein we would
be using inputs from the students in making the platform more
intuitive. Thus the platform evaluation surveys provide a direct
feedback mechanism for students which helps us improve the
platform, making it more user-friendly and intuitive.

The Let’s HPC platform also uses Google Analytics on the website
in order to estimate the usage patterns on the platform. Fig. 23
summarizes the results of the platform for the duration of August
2017-December 2017, which roughly corresponds to the duration
of the Autumn 2017 CS301 course offering. We make a couple of
observations based on the Google Analytics data.

e Roughly 77% of the users are returning users, which indi-
cates that the students found the Let’s HPC platform to be
helpful throughout their lab assignments and projects.

e The Average Session Duration reported is only 7 min and
20 s. This suggests that the Let’s HPC platform allows users to
quickly plot, summarize, and analyze data about their HPC
experiments.

These survey results and the Google Analytics data have en-
abled us to understand how students use this platform, where
the strengths of the platform lie and what avenues are available
for improvement. We use these inputs to make better plans for
future work (elaborated in Section 8), aiming to build on existing
strengths and to enhance tools that can be improved.

7. Summary of platform features

The Let’s HPC platform has been designed with the aim of
easing the process of analysis of HPC/PDC programs from a holistic
systems perspective. All the tools that the platform provides are
targeted towards making the process as smooth as possible. The
tools of the platform can be used starting at the stage where
codes have been written. The automated scripts for compiling and
running codes, and for data collection ensure that tasks not directly
helpful for analysis are automated. The scripts also run the codes
multiple times to account for any anomalies that may arise due

to non-deterministic hardware factors. The Let’s HPC platform’s
online analysis tools provide a comprehensive set of parameters
on the basis of which to perform analysis. The plotting tools can be
used to plot over 20 parameters which includes perf parameters
along with the conventional metrics like execution time, relative
speedup, efficiency, and the Karp-Flatt Metric. The customizability
of the plotting tool ensures that users can plot the mean, median,
mode or the standard deviation of the parameters (across multiple
runs) and configuring the plots themselves by choosing ranges for
the X/Y axes as well as changing the scales between logarithmic
and linear. As demonstrated in Section 5 these parameters and
plotting tools when combined together are very handy and facil-
itate the user to pinpoint the reasons for the superior/inferior per-
formance of an approach, machine or programming environment
in comparison to other approach(es), machine(s), or programming
environment(s).

The platform also has a Report Generator tool which allows
the students to analyze their approaches and write reports in a
highly structured manner using the plots generated by the plat-
form'’s tools based on the data submitted after running the scripts
provided by the Let’s HPC platform. Apart from empowering the
students to focus on the analysis and not the presentation, this also
allows the Instructors/TAs in the grading process. The instructors
can also use the repository of data (codes, data logs and plots)
that is made publicly available, to teach students more practical
concepts that cannot be done using merely textbooks. This further
enhances the platform as a lot of novel approaches are made
available to the users of the Let’s HPC platform, who may not have
access to this data otherwise.

Overall our platform provides numerous tools that simplify the
workflow of all users of the HPC community. The modular design
allows our platform to expand in the future to incorporate more
advanced features.

8. Concluding remarks, ongoing work, and future scope

Our framework is designed in a highly modular manner, pro-
viding numerous features that are useful to various stakeholders
in the HPC community. The archival database is apt for acting as a
benchmark for the HPC community particularly from a pedagogical
perspective. At the same time, it is a tool that acts as a record
of the HPC capabilities of various machines across years and can
become a resource later for studying the gradual evolution of
multi-core architecture and performance of parallel algorithms on
such architecture. The plotting and analysis tools built on top of
it, including the comparison tool and the tool allowing analysis of
custom data both fill a gap in current approaches to HPC educa-
tion. Our platform supplements theoretical and algorithm oriented
education by showcasing the importance of keeping a holistic,
system’s perspective to the study and analysis of performance of
HPC systems. The automated scripts and the report generator tool
makes HPC education easier for both instructors and students by

B. Chaudhury et al. / J. Parallel Distrib. Comput. 118 (2018) 213-232 231

bringing the focus to concepts that matter and allowing automa-
tion of trivial, mundane tasks.

The modular design of our platform allows for numerous, easy
ways to improve the framework and to add features in the future.
We are in the process of developing discussion forums allow-
ing comments for each approach-machine-environment config-
uration in the database. Currently, the involvement of the HPC
community on this platform is a passive involvement with most
users only studying the data provided. The introduction of dis-
cussion forums will allow users to participate more interactively
with other users. Extending this with HPC courses in mind, we
will also introduce more refined forum abilities for HPC courses,
with peer learning oriented features for students, and teaching
and evaluation related features for instructors. This would not
only bring in very fine access permissions which can enable all
course assignments and projects to be done and evaluated via
the platform itself but also facilitate active collaboration. Further
features along with discussion forums can make the whole process
of collaboration more streamlined.

While the inclusion of perf data allows a holistic system per-
spective analysis, we plan to include more advanced tools and
models in the existing framework in the future which will offer
additional insights to educators and students on how to improve
performance (e.g. [43]). Along with catering to more advanced
users, we also hope to incorporate features that aid beginning self-
learners to understand HPC/PDC concepts. Apart from additional
tools and features we also plan to extend and customize existing
ones, making them more intuitive and user-friendly in the process.
We will be adding more problems and categories to the set of
benchmark data including those that use accelerators. We would
also be allowing customized report generation that users can tune
based on the particular problem at hand. These changes address
various feedback that were received from students during the
platform evaluation surveys.

As along term goal, we envision the Let’s HPC project to become
a platform satisfying all requirements for HPC education, providing
tools that combine to give an end-to-end solution starting with
the scripts to automate data collection and statistical tools allow-
ing analysis of variability of performance data to the final report
generation (for students) and report evaluation (for instructors).
Eventually, with active collaboration from the HPC community, the
platform will include tools for online comparison of experiments
run on various heterogeneous architectures and accelerators. As a
more generic service, we want to eventually allow users to upload
just their codes and then automate the whole end-to-end process
using servers to run codes and allow users to directly move to
analyzing performance results. This would truly allow HPC to be
adopted by those without high end HPC resources.

Acknowledgments

The author Bhaskar Chaudhury would like to acknowledge the
support received through NSF/TCPP CDER Center Early Adopter
Awards Program (Fall 2014). This work has been carried out using
the computing resources/HPC facilities at DA-IICT and we would
like to thank DA-IICT for the invaluable support in carrying out
this project. We thank students of CS301 High Performance Com-
puting course (Autumn 2016 and Autumn 2017) at DA-IICT for
their feedback and for providing some of the codes on which this
tool was tested. We thank Omkar Damle and Rajdeep Pinge for
their contribution towards the project. Many thanks to all the
data (benchmark-database) contributors. We thank Dhruv Thakker
for his very useful contributions towards the web development
and maintenance of this website. We would also like to express
our gratitude to all the reviewers for their comments which have
helped us improve the quality of the paper immensely.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jpdc.2018.03.001.

References

[1] J. Adams, R. Brown, E. Shoop, Patterns and exemplars: Compelling strategies
for teaching parallel and distributed computing to CS undergraduates, in: 27th
International Parallel and Distributed Processing Symposium Workshops and
Ph.D. Forum IPDPSW, 2013.

Alan H. Karp, Horace P. Flatt, Measuring parallel processor performance,

Commun. ACM 33 (1990) 539-543.

G.M Amdahl, Validity of the single processor approach to achieving large scale

computing capabilities, in: AFIPS '67 (Spring) Proceedings Of the Spring Joint

Computer Conference, 1967 New Jersey, pp. 483-485.

Ananth Grama, George Karypis, Vipin Kumar, Anshul Gupta, Introduction to

Parallel Computing, Addison-Wesley, 2003.

Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, Operating Systems:

Three Easy Pieces v0.91, Arpaci-Dusseau Books, 2015.

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,]. Kubiatowicz,

N. Morgan, D. Patterson, K. Sen,]. Wawrzynek, D. Wessel, K. Yelick, A view

of the parallel computing landscape, Commun. ACM 52 (10) (2009) 56-67.

B. Atanasovski, S. Ristov, M. Gusev, N. Anchev, Educache simulator for teaching

computer architecture and organization, in: Global Engineering Education

Conference, EDUCON, 2013 IEEE, IEEE, 2013, pp. 1015-1022.

E. Ayguade, R.M. Badia, D. Jimenez,]. Herrero, J. Labarta, V. Subotic, G. Utrera,

Tareador: A tool to unveil parallelization strategies at undergraduate level, in:

Workshop on Computer Architecture Education, 42nd ISCA, 2015, Portland,

USA.

M. Ben-Ari, A suite of tools for teaching concurrency, ACM SIGCSE Bull. 36 (3)

(2004) 251-251.

[10] Bhaskar Chaudhury, Integrating parallel computing courses into the under-
graduate programs in ICT and Computational Science, EduPar-16, 31st [EEE-
IPDPS, Chicago, IL, USA, 2016 http://grid.cs.gsu.edu/~tcpp/.

[11] StevenA.Bogaerts, Limited time and experience: Parallelism in CS1, in: Parallel
& Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE Inter-
national, 2014.

[12] R. Brown, E. Shoop, J. Adams, C. Clifton, M. Gardner, M. Haupt, P. Hinsbeeck,
Strategies for preparing computer science students for the multicore world,
in: Proceedings of the 2010 ITiCSE Working Group Reports, ITiCSE-WGR 10,
ACM, New York, NY, USA, 2010.

[13] M. Cosnard, Denis Trystram, Parallel Algorithms and Architectures, Thomson
Learning, 1994.

[14] CSinParallel Project, (Retrieved 2016) Science Education Resource Center
(SERC) at Carleton College http://csinparallel.org.

[15] A. Danner, T. Newhall, Integrating parallel and distributed computing topics
into an undergraduate cs curriculum, in: Proc. Workshop on Parallel and
Distributed Computing Education, EduPar13, 2013.

[16] C.T.Delistavrou, K.G. Margaritis, Towards an integrated teaching environment
for parallel programming, in: Informatics (PCI), 2011 15th Panhellenic Confer-
ence on, IEEE, 2011, pp. 3-7.

[17] W.B. Gardner, J.D. Carter, Using the pilot library to teach message-passing
programming, in: Education for High Performance Computing (EduHPC), 2014
Workshop on, IEEE, 2014, pp. 1-8.

[18] P. Garrity, T. Yates, R. Brown, E. Shoop, Webmapreduce: An accessible and
adaptable tool for teaching map-reduce computing, in: Proceedings of the
42nd ACM Technical Symposium on Computer Science Education, SIGCSE11,
ACM, NY, USA, 2011, p. 183188.

[19] AY. Grama, A. Gupta, V. Kumar, Isoefficiency: Measuring the scalability of
parallel algorithms and architecture, IEEE Parallel Distrib. Technol. (1993)
12-21.

[20] Google Charts API (Retrieved 2017) http://developers.google.com/chart/.

[21] M. Guseyv, S. Ristov, G. Velkoski, B. Ivanovska, E-learning and benchmarking
platform for parallel and distributed computing, iJET 9 (2) (2014) 17-21.

[22] G. Hager, G. Wellein, Introduction to High Performance Computing for Scien-
tists and Engineers, CRC Press, 2011.

[23] Shams Imam, Vivek Sarkar, Habanero-Java library: A Java 8 framework for
multicore programming, in: Proceedings of the 2014 International Conference
on Principles and Practices of Programming on the Java platform: Virtual
machines, Languages, and Tools, 2014.

[24] Intel Courseware : High Performance Computing (Parallel Programming) Re-
trieved 2017, Intel Software Academic Program https://software.intel.com/en-
us/courseware/hpc.

[25] C. lvica,].T. Riley, C. Shubert, Starhpcteaching parallel programming within
elastic compute cloud, in: Information Technology Interfaces, 2009. ITI'09.

2

3

[4

[5

[6

(7

[8

[9

https://doi.org/10.1016/j.jpdc.2018.03.001
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb4
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb4
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb4
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb5
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb5
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb5
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb6
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb6
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb6
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb6
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb6
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb9
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb9
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb9
http://grid.cs.gsu.edu/%7Etcpp/
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb12
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb12
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb12
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb12
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb12
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb12
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb12
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb13
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb13
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb13
http://csinparallel.org
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb16
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb16
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb16
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb16
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb16
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb17
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb17
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb17
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb17
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb17
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb19
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb19
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb19
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb19
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb19
http://developers.google.com/chart/
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb21
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb21
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb21
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb22
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb22
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb22
https://software.intel.com/en-us/courseware/hpc
https://software.intel.com/en-us/courseware/hpc
https://software.intel.com/en-us/courseware/hpc
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb25

232 B. Chaudhury et al. / . Parallel Distrib. Comput. 118 (2018) 213-232

Proceedings of the ITI 2009 31st International Conference on, IEEE, 2009,
pp. 353-356.

[26] L. John Gustafson, Reevaluating Amdahl’s law, Commun. ACM 31 (1988)
532-533.

[27] L. John Gustafson, Fixed time, tiered memory, and superlinear speedup, in:
Proceedings of the Fifth Distributed Memory Computing Conference, DMCC5,
1990, p. 1255.

[28] Joint Task Force on Computing Curricula, Association for Computing Machin-
ery(ACM) and IEEE Computer Society, Computer Science Curricula 2013: Cur-
riculum Guidelines for Undergraduate Degree Programs in Computer Science,
ACM, New York, USA.

[29] Let’'s HPC Team, Let’s HPC Automated Scripts and Sample Code https://github.
com/letshpcorg/letshpcsample, 2017.

[30] Let’'s HPC Project DA-IICT (Retrieved 2017) http://letshpc.org, http://letshpc.
herokuapp.com.

[31] Timothy Mattson, Beverly Sanders, Berna Massingill, Patterns for Parallel
Programming, Addison-Wesley, 2004.

[32] M. Nowicki, M. Marchwiany, M. Szpindler, P. Bata, On-line service for teach-
ing parallel programming, in: European Conference on Parallel Processing,
Springer, 2015, pp. 78-89.

[33] nVIDIA Educator Resources (Retrieved 2017) https://developer.nvidia.com/
educators.

[34] OnRamp to Parallel Computing - an educational web portal for learning to
use parallel systems (Retrieved 2017) OnRamp to Parallel Computing project
https://github.com/OnRampOrg/onramp.

[35] D.A.Patterson,].L. Hennessy, Computer Architecture A quantitative Approach,
fifth ed., Morgan Kaufmann, 2011.

[36] Peter S. Pacheco, An Introduction to Parallel Programming, Elsevier, 2011.

[37] S.XK.Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta,]. Jaja, K. Kant, A.
La Salle, R. LeBlanc, A. Lumsdaine, D. Padua, M. Parashar, V. Prasanna, Y. Robert,
A. Rosenberg, S. Sahni, B. Shirazi, A. Sussman, C. Weems,]. Wu, NSF/IEEE-TCPP
Curriculum Initiative on Parallel and Distributed Computing - Core Topics for
Undergraduates, Version I, 2012 55 pages, www.cs.gsu.edu/~tcpp/curriculum/
index.php.

[38] S.Prasad, A. Gupta, L., A. Rosenberg, A. Sussman, C.C. Weems, Topics in par-
allel and distributed computing: introducing concurrency in undergraduate
courses, Elsevier Morgan Kaufmann, USA, 2015.

[39] Michael]. Quinn, Parallel Computing Theory and Practice, McGraw Hill Educa-
tion, 2002.

[40] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw
Hill Education, 2003.

[41] B.W. Rague, Exploring concurrency using the parallel analysis tool,
in: Proceedings of the 43rd ACM technical symposium on Computer Science
Education, ACM, 2012, pp. 511-516.

[42] Miller Russ, Algorithms Sequential & Parallel: A Unified Approach, Cengage
Learning, 2013.

[43] Williams Samuel, Waterman Andrew, Patterson David, Roofline: An insightful
visual performance model for multicore architectures, Commun. ACM 52
(2009) 65-76.

[44] Moritz Schlarb, Christian Hundt, Bertil Schmidt, SAUCE: A web-based auto-
mated assessment tool for teaching parallel programming, in: Euro-Par 2015:
Euro-Par 2015: Parallel Processing Workshops, 2015, pp. 54-65.

[45] SeeMore project (Retrieved 2017) Understanding Parallel computing through
Art http://[www.seemoreproject.com/.

[46] Joseph Sifakis, A vision for computer science the system perspective, Cent. Eur.
J. Comp. Sci. 1(2011) 108-116.

[47] O. Sukhoroslov, Using everest platform for teaching parallel and distributed
computing, in: European Conference on Parallel Processing, Springer, 2016,
pp. 16-27.

[48] Hoefler Torsten, Belli Roberto, Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance results,
in: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 2015, p. 73.

[49] Undergraduate petascale modules (Retrieved 2017) Shodor Education founda-
tion http://shodor.org/petascale/materials/modules/.

[50] A. Varma, Y. Keswani, Y. Bhatnagar, B. Chaudhury, Let's HPC: A web-based
interactive platform to aid High Performance Computing education, 2017,
arXiv preprint arXiv:1701.06356v1.

[51] Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis, Introduction
to Parallel Computing: Design Analysis of Parallel Algorithms, Benjamin-
Cummings Publishing Co., 1994.

[52] Wikipedia, MEAN (software bundle) —wikipedia, The Free Encyclopedia, ht
tps://en.wikipedia.org/w/index.php?title=MEAN_(software_bundle)&oldid=7
60144286 (Online; accessed 15-January-2017)..

[53] Y. Zhi, Y. Liu, L. Jiao, P. Zhang, A parallel simulator for large-scale parallel
computers, in: Grid and Cooperative Computing (GCC), 2010 9th International
Conference on, IEEE, 2010, pp. 196-200.

Bhaskar Chaudhury is currently an associate profes-
sor of Computational Science at DA-IICT, India. He com-
pleted his Ph.D. in Computational Physics at IPR, India
in 2008. From 2008-2013, he worked as a researcher
at LAPLACE Laboratory, CNRS, Toulouse, France. His re-
search interests include Computational Science, High
Performance Computing, Computational Electromagnet-
ics, Computational Plasma Physics, Parallel programming
models, Scientific Data analysis and Visualization. He has
published more than forty research papers in world class
journals/conference proceedings and delivered various
talks/presentations worldwide. He is a reviewer of various prestigious international
journals and the recipient of several international/national awards in the area of
Computational Science.

Akshar Varma is a Ph.D. student in the College of Com-
puter and Information Science at Northeastern Univer-
sity, focusing on Theoretical Computer Science. He got
his bachelor’s degree in Information and Communication
Technology with a minor in Computational Science from
DA-IICT, India. His primary research interests are in theo-
retical aspects of computer science, and in the past he has
been interested in HPC and Computational Sciences.

Yashwant Keswani completed his B.Tech. Honours in In-
formation and Communication Technology with a minor
in Computational Science from DA-IICT, India and has
research interests in Parallel and Distributed Computing,
Semantic Web and Data Science.

| Yashodhan Mohan Bhatnagar received the B.Tech. (Hon-
| ours)in Information and Communication Technology with
. minors in Computational Science from DA-IICT, Gandhina-
gar in 2017. His research interests include applications of
~ artificial neural networks on real-life optimization prob-
lems, computational systems biology, scalable software
| architecture analysis and signals systems analysis.

Samarth Parikh is pursuing his B.Tech. in Information and
Communication Technology at DA-IICT and has research
interests in Parallel and Distributed Computing and Data
Science.

http://refhub.elsevier.com/S0743-7315(18)30120-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb26
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb26
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb26
https://github.com/letshpcorg/letshpcsample
https://github.com/letshpcorg/letshpcsample
https://github.com/letshpcorg/letshpcsample
http://letshpc.org
http://letshpc.herokuapp.com
http://letshpc.herokuapp.com
http://letshpc.herokuapp.com
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb31
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb31
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb31
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb32
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb32
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb32
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb32
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb32
https://developer.nvidia.com/educators
https://developer.nvidia.com/educators
https://developer.nvidia.com/educators
https://github.com/OnRampOrg/onramp
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb35
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb35
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb35
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb36
http://www.cs.gsu.edu/%7Etcpp/curriculum/index.php
http://www.cs.gsu.edu/%7Etcpp/curriculum/index.php
http://www.cs.gsu.edu/%7Etcpp/curriculum/index.php
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb38
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb38
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb38
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb38
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb38
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb39
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb39
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb39
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb40
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb40
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb40
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb41
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb41
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb41
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb41
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb41
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb42
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb42
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb42
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb43
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb43
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb43
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb43
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb43
http://www.seemoreproject.com/
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb46
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb46
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb46
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb47
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb47
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb47
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb47
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb47
http://shodor.org/petascale/materials/modules/
http://arxiv.org/1701.06356v1
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb51
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb51
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb51
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb51
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb51
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
https://en.wikipedia.org/w/index.php%3Ftitle%3DMEAN%5F%28software%5Fbundle%29%26oldid%3D760144286
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb53
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb53
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb53
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb53
http://refhub.elsevier.com/S0743-7315(18)30120-5/sb53

	Let's HPC: A web-based platform to aid parallel, distributed and high performance computing education
	Introduction
	Background and motivation
	Course design and implementation
	Evaluation
	Student projects
	Course evaluation by students
	Success stories
	Experiences and student feedback

	Design philosophy of the Let's HPC Platform
	Course instructors
	Students
	Self-learners

	Overview of the website and tools
	Nature of collected data
	Collecting perf data

	Data filtering process
	Report generator

	How to use Let's HPC tools and case studies
	Scripts for data collection
	Performance analysis using platform tools
	Comparing approaches
	Analysis based on the execution time graph
	Analysis based on the (relative) speedup graph
	Analysis based on efficiency
	Analysis based on Karp–Flatt metric
	Other analysis

	Comparing machines

	Platform evaluation and improvement
	Summary of platform features
	Concluding remarks, ongoing work, and future scope
	Acknowledgments
	Supplementary data
	References

